Leetcode_172_Factorial Trailing Zeroes】的更多相关文章

本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/42417535 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 思路: (1)题意为求解一个整数经过阶乘计算得到结果中有多少个0. (2)我们知道0的个数和…
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 Note中提示让用对数的时间复杂度求解,那么如果粗暴的算出N的阶乘然后看末尾0的个数是不可能的. 所以仔细分析,N! = 1 * 2 * 3 * ... * N 而末尾0的个数只与这些乘数中5和2的个数有关,因为每出现一对5和2就会产生…
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. Credits:Special thanks to @ts for adding this problem and creating all test cases. 这道题并没有什么难度,是让求一个数的阶乘末尾0的个数,也就是要找乘数中10的个数,…
Write an algorithm which computes the number of trailing zeros in n factorial. Have you met this question in a real interview? Yes Example 11! = 39916800, so the out should be 2 Challenge O(log N) time LeetCode上的原题,请参见我之前的博客Factorial Trailing Zeroes.…
题目描述: Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 解题思路: 这个题目给的评级是easy,其实只要想到要求n!中0的个数,能够得到0的只有:2,4,5,10,100....而这里面又以5最为稀缺,所以说我们可以得出阶乘的最终结果中的0的数量等于因子中5的数量,比如说10,阶乘含两个0,…
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 主要是思考清楚计算过程: 将一个数进行因式分解,含有几个5就可以得出几个0(与偶数相乘). 代码很简单. public class Solution { public int trailingZeroes(int n) { int result =…
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 思路:编程之美里有,就是找因子5的个数. int trailingZeroes(int n) { ; ) { ans += n / ; n /= ; } return ans; }…
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 解题思路: 计算n能达到的5的最大次幂,算出在这种情况下能提供的5的个数,然后减去之后递归即可,JAVA实现如下: static public int trailingZeroes(int n) { if(n<25) return n/5; lon…
Given an integer n, return the number of trailing zeroes in n!. 最初的代码 class Solution { public: int trailingZeroes(int n) { long long int fac = 1; int count=0; if (n==0) fac = 1; for(int i = n;i>0;i--) { fac *= i ; } while(fac % 10 == 0) { count ++; f…
原题链接在这里:https://leetcode.com/problems/factorial-trailing-zeroes/ 求factorial后结尾有多少个0,就是求有多少个2和5的配对. 但是2比5多了很多,所以就是求5得个数.但是有的5是叠加起来的比如 25,125是5的幂数,所以就要降幂. e.g. n = 100, n/5 =20, n/25= 4, n/125=0,所以加起来就有24个0. O(logn)解法: 一个更聪明的解法是:考虑n!的质数因子.后缀0总是由质因子2和质因…