首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Bagging与随机森林算法原理小结
】的更多相关文章
Bagging与随机森林算法原理小结
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1. bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…
机器学习——Bagging与随机森林算法及其变种
Bagging算法: 凡解:给定M个数据集,有放回的随机抽取M个数据,假设如此抽取3组,3组数据一定是有重复的,所以先去重.去重后得到3组数据,每组数据量分别是s1,s2,s3,然后三组分别训练组合成一个强模型.如下图: 随机森林算法: 一般用于大规模数据,百万级以上的. 在Bagging算法的基础上,如上面的解释,在去重后得到三组数据,那么再随机抽取三个特征属性,选择最佳分割属性作为节点来创建决策树.可以说是 随机森林=决策树+Bagging 如下图 RF(随机森林)的变种: ExtraT…
随机森林算法原理及OpenCV应用
随机森林算法是机器学习.计算机视觉等领域内应用较为广泛的一个算法.它不仅可以用来做分类(包括二分类和多分类),也可用来做回归预测,也可以作为一种数据降维的手段. 在随机森林中,将生成很多的决策树,并不像在决策树那样只生成唯一的树.随机森林在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,每个树都是一个独立的判断分支,互相之间彼此独立.随机森林在运算量没有显著提高的前提下提高了预测精度,并且对多元公线性不敏感,判断结果缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量…
scikit-learn随机森林调参小结
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC…
Bagging与随机森林(RF)算法原理总结
Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合,本文就对集成学习中的Bagging和随机森林做一个总结. 随机森林是集成学习中可以和GBDT相较衡的算法,尤其是它可以很方便地进行并行训练,在现在的大数据大样本下很有诱惑力. 1.Bagging的原理 在集成学习原理总结的Bagging原理这一块,我们画了这么一张流程图 从…
机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting)
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树---------------------------------------------------------------------1.描述:以树为基础的方法可以用于回归和分类.树的节点将要预测的空间划分为一系列简单域划分预测空间的规则可以被建模为一棵树,所以这种方法也叫决策树方法bagging,随机森林,boosting 是多棵决策树组合起来采用投票方式产生一个预测结果的方法机制…
机器学习总结(二)bagging与随机森林
一:Bagging与随机森林 与Boosting族算法不同的是,Bagging和随机森林的个体学习器之间不存在强的依赖关系,可同时生成并行化的方法. Bagging算法 bagging的算法过程如下: 1:从原始样本集中使用Bootstraping自助采样的方法随机抽取n个训练样本,共进行k轮抽取,得到k个训练集.(k个训练集之间相互独立,元素可以有重复)2:对于k个训练集,我们训练k个模型(这k个模型可以根据具体问题而定,比如决策树,knn等)3:对于分类问题:由k个模型的预测结果投票表决产生…
随机森林算法-Deep Dive
0-写在前面 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出.简单来说,是一种bagging的思想,采用bootstrap,生成多棵树,CART(Classification And Regression Tree)构成的.对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中.对于一个有n行的数据集,out of…
100天搞定机器学习|Day56 随机森林工作原理及调参实战(信用卡欺诈预测)
本文是对100天搞定机器学习|Day33-34 随机森林的补充 前文对随机森林的概念.工作原理.使用方法做了简单介绍,并提供了分类和回归的实例. 本期我们重点讲一下: 1.集成学习.Bagging和随机森林概念及相互关系 2.随机森林参数解释及设置建议 3.随机森林模型调参实战 4.随机森林模型优缺点总结 集成学习.Bagging和随机森林 集成学习 集成学习并不是一个单独的机器学习算法,它通过将多个基学习器(弱学习器)进行结合,最终获得一个强学习器.这里的弱学习器应该具有一定的准确性,并且要有…
机器学习回顾篇(12):集成学习之Bagging与随机森林
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…