论文链接:https://aclweb.org/anthology/P18-1031 对文章内容的总结 文章研究了一些在general corous上pretrain LM,然后把得到的model transfer到text classiffication上 整个过程的训练技巧. 这些技巧的切入点是learning rate. 主要是三个: (1)discriminative fine-tuning (其中的discriminative 指 fine-tune each layer with d…
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving>,论文中的效果还不错,后来查了一下,有一个Tensorflow版本的实现,因此在自己的机器上配置了Tensorflow的环境,然后将其给出的demo跑通了,其中遇到了一些小问题,通过查找网络上的资料解决掉了,在这里…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…
论文源址:https://arxiv.org/abs/1704.05776 开源代码:https://github.com/xiaohaoChen/rrc_detection 摘要 大多数目标检测及定位算法基于R-CNN类型的两阶段处理方法,第一阶段生成可行区域框,第二步对决策进行增强.尽管简化了训练过程,但在benchmark获得较高mAP的结果下,单阶段的检测方法仍无法匹敌两阶段的方法. 本文提出了一个新的单阶段的目标检测网络用于克服上述缺点,称为循环滚动卷积结构,在多尺寸feature m…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by Step Convolutional Neural Networks: Application Residual Networks Autonomous driving - Car detection YOLO Face Recognition for the Happy House Art: N…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
Event StoryLine Corpus 论文阅读 本文是对 Caselli T, Vossen P. The event storyline corpus: A new benchmark for causal and temporal relation extraction[C]//Proceedings of the Events and Stories in the News Workshop. 2017: 77-86. 阅读的总结.有任何问题请邮件联系 arrogant262@gm…
Behavior Trees for Path Planning (Autonomous Driving) 2019-11-13 08:16:52 Path planning in self-driving cars Path planning and decision making for autonomous vehicles in urban environments enable self-driving cars to find the safest, most convenient,…
YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YOLO已经发布了两个版本,在下文中分别称为YOLO V1和YOLO V2.YOLO V2的代码目前作为Darknet的一部分开源在GitHub.在这篇博客中,记录了阅读YOLO两个版本论文中的重点内容,并着重总结V2版本的改进. Update@2018/04: YOLO v3已经发布!可以参考我的博客…