机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示为  公式可以简化为 两个矩阵相乘   其实就是所有参数和变量相乘再相加  所以矩阵的乘法才会是那样 那么他的代价函数就是 同样是寻找使J最小的一系列参数 python代码为 比如这种     那么X是[1,2,3]   y也是[1,2,3]   那么令theta0 = 0  theta1 = 1 …
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 2. 多变量线性回归 Linear Regression with Multiple Variables 1 多特征值(多变量) Multiple Features(Variables) 首先,举例说明了多特征值(多变量)的情况.在下图的例子中,…
4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).…
4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性(可选) 4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).…
4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性(可选) 4.1  多维特征 目前为止,探讨了单变量/特征的回归模型,现在对房价模型增加更多的特征 增添更多特征后,引入一系列新的注释: n  代表特征的数量…
本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,...,xn) 表示为: =1,则公式转化为: .加载训练数据 数据格式为: X1,X2,Y 2104,3,399900 1600,3,329900 2400,3,369000 1416,2,232000 将数据逐行读取,用逗号切分,并放入np.array #加载数据 def load_exdata(fil…
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(features),使问题变成多元线性回归问题. 多元线性回归将通过更多的输入特征,来预测输出.上面有新的Notation(标记)需要掌握. 相比于之前的假设: 我们将多元线性回归的假设修改为: 每一个xi代表一个特征:为了表达方便,令x0=1,可以得到假设的矩阵形式: 其中,x和theta分别表示: 所…
4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn) 增添更多特征后,我们引入一系列新的注释: n 代表特征的数量 x(i)代表第 i个训练实例,是特征矩阵中的第$i$行,是一个向量(vector). 比方说,上图的 xj(i)代表特征矩阵中第 i行的第 j个特征,也就是第 i个训练实例的第 j个特征. 如上图的x(2)2=3,x(2)3=2, 支持多变量的假设 h…
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
我们从上一篇博客中知道了关于单变量线性回归的相关问题,例如:什么是回归,什么是代价函数,什么是梯度下降法. 本节我们讲一下多变量线性回归.依然拿房价来举例,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x0 ,x1 ,...,xn ). 增添更多特征后,我们引入一系列新的注释: 假设函数 h 表示为: 这个公式中有 n+1个参数和 n 个变量,为了使得公式能够简化一些,引入x0 = 1,则公 式转化为: 此时模型中的参数是一个 n+1维 的向量,…
我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(…
1.线性回归介绍 X指训练数据的feature,beta指待估计得参数. 详细见http://zh.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B 使用最小二乘法拟合的普通线性回归是数据建模的基本方法. 令最小二乘项的偏导为0(为0时RSS项最小),求Beta估计值,得到最小二乘的向量形式. 最小二乘其实就是找出一组参数beta使得训练数据到拟合出的数据的欧式距离最小.如下图所示,使所有红点(训练…
Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D [3]学习速率 α Answer: B,因为第一个比第二个下降的快.第三个上升说明α太大 [4]Mean Normalization Answer:C [5]Normal Equation Answer:D Linear Regression with Multiple Variables [1]…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, 1 % Exercise 1: Linear regression with multiple variables %% Initialization %% ================ Part 1: Featu…
机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-squares(在spss里线性回归对应的模块就叫OLS即Ordinary Least Squares): 算法:基于训练数据集,根据学习策略,选择最优模型的计算方法.确定模型中每个θi取值的计算方法,往往归结为最优化问题.对于线性回归,我们知道它是有解析解的,即正规方程 The normal equa…
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)--房屋面积x.我们希望使用这个特征量来预测房子的价格.我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(变量)),我们还知道卧室的数量.楼层的数量以及房屋的使用年限,那么这就给了我们更多可以用来预测房屋价格的信息. 即,支持多变量的假设为:…
代价函数cost function 公式: 其中,变量θ(Rn+1或者R(n+1)*1) 向量化: Octave实现: function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the % parameter for linear regression…
1. Multiple Features note:X0 is equal to 1 2. Feature Scaling Idea: make sure features are on a similiar scale, approximately a -1<Xi<1 range For example: x1 = size (0-2000 feet^2) max-min or standard deviation x2 = number of bedrooms(1-5) The conto…
一.Multiple Features 这节课主要引入了一些记号,假设现在有n个特征,那么: 为了便于用矩阵处理,令\(x_0=1\): 参数\(\theta\)是一个(n+1)*1维的向量,任一个训练样本也是(n+1)*1维的向量,故对于每个训练样本:\(h_\theta(x)=\theta^Tx\). 二.Gradient Decent for Multiple Variables 类似地,定义代价函数: 同时更新参数直到\(J\)收敛: \[\theta_j:=\theta_j-\alph…
https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables 1. Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the…
引入额外标记 xj(i) 第i个训练样本的第j个特征 x(i) 第i个训练样本对应的列向量(column vector) m 训练样本的数量 n 样本特征的数量 假设函数(hypothesis function) 公式: 向量化: 其中:令x0=1,x0引入的目的是为了"美化",以便于矩阵计算 使用矩阵计算: 令X存储训练样本,形如: 我们就可以这样计算假设:…
前面还有一章主要讲解,基本的Linear Algebra线性代数的知识,都比较简单,这里就直接跳过了. Speaker: Andrew Ng 1. Multiple featues 训练集的特征变成了多个,就是有多个的输入变量,对应一个的输出变量,但仍然是线性的关系. 其中columns为 n 类特征,rows为 m 个samples,代表 i 个sample数据,代表第 i 个sample数据的第 j 个特征的值. 接下来我们定义在多变量下的: 其中针对通常的情况认为为1,这里通过向量表示为:…
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFC…
1. notation: n = number of features x(i) = input (features) of ith training example  = value of feature j in ith training example 2. Hypothesis: 3. Cost function: 4. Gradient descent: Repeat { } substituting cost function, then Repeat { (simultaneous…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable  1. 代价函数Cost Function  在单变量线性回归中,已知有一个训练集有一些关于$x$.$y$的数据(如×所示),当我们的预测值$h(x)$…
线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Representation 一个实际问题,我们可以对其进行数据建模.在机器学习中模型函数一般称为hypothsis.这里假设h为: 我们从简单的单变量线性回归模型开始学习. 1.2 代价函数Cost Function 代价函数也有很多种,下面的是平方误差Squared error function: 其…
Lecture 4 Linear Regression with Multiple Variables 多变量线性回归 4.1 多维特征 Multiple Features4.2 多变量梯度下降 Gradient Descent for Multiple Variables4.3 梯度下降法实践 1-特征缩放 Gradient Descent in Practice I - Feature Scaling4.4 梯度下降法实践 2-学习率 Gradient Descent in Practice…
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下降的直观理解 2.6  梯度下降的线性回归 2.7  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x          …
二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 II 2.5  梯度下降 2.6  梯度下降的直观理解 2.7  梯度下降的线性回归 2.8  接下来的内容 2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示:…