笔者本人是个初入机器学习的小白,主要是想把学习过程中的大概知识和自己的一些经验写下来跟大家分享,也可以加强自己的记忆,有不足的地方还望小伙伴们批评指正,点赞评论走起来~ 文章目录 1.k-近邻算法概述 1.1 距离度量 1.2 k值的选择 1.3 分类决策规则 2.k-近邻算法实现 2.1 实现方法 2.2 k-近邻法python3.6实现 2.2.1 k-近邻法实现程序 2.2.2 classify0(inX, dataSet, labels, k)中部分方法注释 2.2.3 如何测试分类器…
文章目录 1.改进约会网站匹配效果 1.1 准备数据:从文本文件中解析数据 1.2 分析数据:使用Matplotlib创建散点图 1.3 准备数据:归一化特征 1.4 测试算法:作为完整程序验证分类器 1.5 使用算法:构建完成可用系统 2.手写识别系统 2.1 准备数据:将图像转换为测试向量 2.2 测试算法:使用k-近邻算法识别手写数字 在上一篇文章中我们得到了基于欧式距离.多数表决规则,实现方法采用线性搜索法的k-近邻法classify0(inX, dataSet, labels, k),…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是,有时会发现生成的算法\(f(x)\)的错误率比较高,只使用这个算法达不到要求. 这时\(f(x)\)就是一个弱算法. 在以前学习算法的过程中,我们认识到算法的参数很重要,所以把公式改写成这样: \[ f(x,arguments) \\ where \\ \qquad x \text{ : calculated…
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报  分类: 机器视觉(34)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记…
1.准备:使用Python导入数据 1.创建kNN.py文件,并在其中增加下面的代码: from numpy import * #导入科学计算包 import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数 def createDataSet(): group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels=['A','A','B','B'] return group,labels ##print(create…
文章目录 1.ID3及C4.5算法基础 1.1 计算香农熵 1.2 按照给定特征划分数据集 1.3 选择最优特征 1.4 多数表决实现 2.基于ID3.C4.5生成算法创建决策树 3.使用决策树进行分类 4.存储决策树 通过决策树原理及相关概念细节我们知道,决策树的学习算法主要包括3个步骤:特征选择.决策树生成算法.决策树剪枝,我们按照这个思路来一一实现相关功能. 本文的实现目前主要涉及特征选择.ID3及C4.5算法.剪枝及CART算法暂未涉及,后期补上. 1.ID3及C4.5算法基础 前面文章…
算法 假定数据有M个特征,则这些数据相当于在M维空间内的点 \[X = \begin{pmatrix} x_{11} & x_{12} & ... & x_{1M} \\ x_{21} & x_{22} & ... & x_{2M} \\ . & . & & .\\ . & . & & .\\ . & . & & .\\ x_{N1} & x_{N2} & ... &am…
原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ----------------------------------------------------------------------------------------------------------------- 前言 最近在看Peter Harrington写的“机器学习实战”,这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 这个思路称之…
前几篇我们较为详细地介绍了K-means聚类法的实现方法和具体实战,这种方法虽然快速高效,是大规模数据聚类分析中首选的方法,但是它也有一些短板,比如在数据集中有脏数据时,由于其对每一个类的准则函数为平方误差,当样本数据中出现了不合理的极端值,会导致最终聚类结果产生一定的误差,而本篇将要介绍的K-medoids(中心点)聚类法在削弱异常值的影响上就有着其过人之处. 与K-means算法类似,区别在于中心点的选取,K-means中选取的中心点为当前类中所有点的重心,而K-medoids法选取的中心点…
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类决策规则 3.2 维数诅咒 四.k近邻算法的拓展 4.1 限定半径k近邻算法 4.2 最近质心算法 五.k近邻算法流程 5.1 输入 5.2 输出 5.3 流程 六.k近邻算法优缺点 6.1 优点 6.2 缺点 七.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.…