论文提出Spiking-YOLO,是脉冲神经网络在目标检测领域的首次成功尝试,实现了与卷积神经网络相当的性能,而能源消耗极低.论文内容新颖,比较前沿,推荐给大家阅读   来源:晓飞的算法工程笔记 公众号 论文: Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object Detection 论文地址:https://arxiv.org/abs/1903.06530 Introduction   脉冲神经网络(Spiking n…
一.目标定位 这一小节视频主要介绍了我们在实现目标定位时标签该如何定义. 上图左下角给出了损失函数的计算公式(这里使用的是平方差) 如图示,加入我们需要定位出图像中是否有pedestrian,car,motorcycles.注意在这里我们假设图像中只肯呢个存在这三者中的一种或者都不存在,所以共有四种可能. \(P_c=1\)表示有三者中的一种 \(C_1=1\)表示有pedestrian,反之没有 \(C_2=1\)表示有car \(C_3=1\)表示有motorcycles \(b_*\)用于…
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR. (2016) YOLO的全拼是You Only Look Once,顾名思义就是只看一次,把目标区域预测和目标类别预测合二为一,作者将目标检测任务看作目标区域预测和类别预测的回归问题.该方法采用单个神经网络直接预测物品边界和类别概率,实现端到端的物品检测.因此识…
目标检测,主要问题发展,非极大值抑制中阈值也作为参数去学习更满足end2end,最近发展趋势和主要研究思路方向 待办 目标检测问题时间线 特征金字塔加滑窗 对象框推荐 回归算法回归对象框 多尺度检测 BBOX 回归发展 NMS技术发展 困难样本挖掘技术发展--样本不均衡问题 https://zhuanlan.zhihu.com/p/98756890 目标检测的加速方式 https://zhuanlan.zhihu.com/p/98756890 最新进展 1.更好的引擎 DenseNet,在残差网…
参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-CNN [3]Faster R-CNN: towards real-time object detection with region proposal networks 1. 概述 图像分类,检测及分割是计算机视觉领域的三大任务.图像分类模型是将图像划分为单个类别,通常对应于图像中最突出的物体.但是…
在目标检测中,从很早就有候选区域的说法,也是在2008年可能就有人使用这个方法,在2014年的卷积神经网络解决目标检测问题的文章中,这个候选框方法大放异彩,先前的目标检测方法主要集中在使用滑动窗口的方法,这样穷尽搜索的策略是非常麻烦的,效率低下,在候选框的方法中可以使用训练回归的方法,这样训练的检测算法效果更好(4-5个百分点,出自RCNN),具体的proposal方法的步骤等等,稍后会专门整理,这里发一个备忘录…
(原文地址:维基百科) 简单介绍: 脉冲神经网络Spiking neuralnetworks (SNNs)是第三代神经网络模型,其模拟神经元更加接近实际,除此之外,把时间信息的影响也考虑当中.思路是这种,动态神经网络中的神经元不是在每一次迭代传播中都被激活(而在典型的多层感知机网络中却是),而是在它的膜电位达到某一个特定值才被激活.当一个神经元被激活,它会产生一个信号传递给其它神经元,提高或减少其膜电位. 在脉冲神经网络中,神经元的当前激活水平(被建模成某种微分方程)通常被觉得是当前状态,一个输…
4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1目标定位 对象定位localization和目标检测detection 判断图像中的对象是不是汽车--Image classification 图像分类 不仅要判断图片中的物体还要在图片中标记出它的位置--Classification with localization定位分类 当图片中有 多个 对象时,检测出它们并确定出其位置,其相对于图像分类和定位分类来说强调一张图片中有 多个 对象--Detection目标检测…
论文:You Only Look Once: Unified, Real-Time Object Detection 原文链接:https://arxiv.org/abs/1506.02640 背景介绍 目前的目标检测系统是由原来的目标分类系统改造而来.为了检测目标这些系统在待检测图片的不同位置而使用分类系统.像DPM(deformable parts models)使用了滑动窗口方法.分类器在图片中的不同窗口上运行以便检测出目标. 更先进一点的研究,例如R-CNN使用了候选区域生成的方法.首先…
PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CNN到Fast R-CNN一直采用的思路是proposal+分类 (proposal 提供位置信息, 分类提供类别信息)精度已经很高,但是速度还不行. YOLO提供了另一种更为直接的思路: 直接在输出层回归bounding box的位置和bounding box所属的类别(整张图作为网络的输入,把 O…