Keras的预训练模型地址:https://github.com/fchollet/deep-learning-models/releases 一个稍微讲究一点的办法是,利用在大规模数据集上预训练好的网络.这样的网络在多数的计算机视觉问题上都能取得不错的特征,利用这样的特征可以让我们获得更高的准确率. 1,使用预训练网络的 bottleneck 特征:一分钟达到90%的正确率 我们将使用VGG-16网络,该网络在 ImageNet数据集上进行训练,这个模型我们之前提到过了.因为 ImageNet…
引自:http://blog.csdn.net/sinat_26917383/article/details/72861152 中文文档:http://keras-cn.readthedocs.io/en/latest/  官方文档:https://keras.io/  文档主要是以keras2.0. 训练.训练主要就”练“嘛,所以堆几个案例就知道怎么做了. . . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Ap…
本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一下其他的模型. 模型的预训练权重将下载到 ~/.keras/models/ 并在载入模型时自动载入,当然我们也可以下载到自己的目录下,但是需要去源码修改路径. 模型的官方下载路径:https://github.com/fchollet/deep-learning-models/releases Te…
一.tensorflow安装 首先系统中已经安装了两个版本的tensorflow,一个是通过keras安装的, 一个是按照官网教程https://www.tensorflow.org/install/install_linux#InstallingNativePip使用Virtualenv 进行安装的,第二个在根目录下,做标记以防忘记. 安装教程: 使用 Virtualenv 进行安装 请按照以下步骤使用 Virtualenv 安装 TensorFlow: 发出下列其中一条命令来安装 pip 和…
Application的五款已训练模型 + H5py简述 Keras的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测.特征提取和finetune. 后续还有对以下几个模型的参数介绍: Xception VGG16 VGG19 ResNet50 InceptionV3 所有的这些模型(除了Xception)都兼容Theano和Tensorflow,并会自动基于~/.keras/keras.json的Keras的图像维度进行自动设置.例如,如果你设置da…
keras提供了VGG19在ImageNet上的预训练权重模型文件,其他可用的模型还有VGG16.Xception.ResNet50.InceptionV3 4个. VGG19在keras中的定义: def VGG19(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000) include_top: 是否包含最后的3个全连接层 weights: 定…
利用ajax实现图片预览的步骤为: 程序实现的方法为: 方法一: upload.html <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title></title> <script src="/static/js/jquery-1.12.4.js"></script> &…
目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorch 模型的参数,保存至 hdf5 文件 可能遇到的问题 验证从 PyTorch 导出的 AlexNet 预训练模型 Attentions References tf.keras 的预训练模型都放在了'tensorflow.python.keras.applications' 目录下,在 tensor…
keras中含有多个网络的预训练模型,可以很方便的拿来进行使用. 安装及使用主要参考官方教程:https://keras.io/zh/applications/   https://keras-cn.readthedocs.io/en/latest/other/application/ 官网上给出了使用 ResNet50 进行 ImageNet 分类的样例 from keras.applications.resnet50 import ResNet50 from keras.preprocess…
Keras下载的数据集在以下目录中: root\\.keras\datasets Keras下载的预训练模型在以下目录中: root\\.keras\models 在win10系统来说,用户主目录是:C:\Users\user_name,一般化user_name是Administrator在Linux中,用户主目录是:对一般用户,/home/user_name,对于root用户,/root…
在网上看到一篇博客,地址https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/,是关于利用keras上预训练的模型进行图像分类的示例,于是我也自己动手运行了一下,效果,一般. 上代码 from keras.applications import ResNet50 from keras.applications import InceptionV3 from keras.ap…
在做h5移动页面,相信大家一定碰到过页面已经打开,但是里面的图片还未加载出来的情况,这种问题虽然不影响页面的功能,但是不利于用户体验.抛开网速的原因,解决这个问题有多方面的思路:最基本的,要从http请求合并,缓存管理,图片压缩等方面做性能优化:另外就是可以对页面里用到的所有图片做预加载的处理,当用户打开页面的时候不立即显示第一屏,而是先显示资源加载效果,等到加载完毕,再来显示页面的主内容,这样就能解决那个问题.虽然这种加载效果占用了用户的浏览时间,但是我们可以把它做的好看有趣一点,所以也不会影…
最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的时候一些我自己很容易搞错的点. 一.与序列文本有关 1.仅对序列文本进行one-hot编码 比如:使用路透社数据集(包含许多短新闻及其对应的主题,包括46个不同的主题,每个主题有至少10个样本) from keras.datasets import reuters (train_data,train…
I am going through the following blog on LSTM neural network:http://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/ The author reshapes the input vector X as [samples, time steps, features] for different…
iOS提供了使用其他app预览文件的支持,这就是Document Interaction Controller.此外,iOS也支持文件关联,允许其他程序调用你的app打开某种文件.而且,从4.2开始,Quick Look Framework提供了对多种文档的内置打印.你可以参考DocumentInteraction Controller类参考以及Quick Look Framework指南,以及DocInteraction示例程序.本文讨论了Document InteractionControl…
什么是预训练模型 简单来说,预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型.你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手. 比如说,你如果想做一辆自动驾驶汽车,可以花数年时间从零开始构建一个性能优良的图像识别算法,也可以从Google在ImageNet数据集上训练得到的Inception model(一个预训练模型)起步,来识别图像. 一个预训练模型可能对于你的应用中并不是100%的准确对口,但是它可以为你节省大量功夫…
https://blog.csdn.net/xiaohuihui1994/article/details/83340080…
一.tensorflow提供的evaluation Inference and evaluation on the Open Images dataset:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/oid_inference_and_evaluation.md 该链接中详细介绍了如何针对Open Images dataset数据集进行inference和evaluation,按…
mysql版本:5.7 : 数据库:rdshare:表captain_america3_sd用来记录某帧是否被检测.表captain_america3_d用来记录检测到的数据. python模块,包部分内容参考http://www.runoob.com/python/python-modules.html  https://www.cnblogs.com/ningskyer/articles/6025964.html 一.连接数据库 参考: # 将视频插入数据库 def video_insert…
一.运行样例 官网链接:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb  但是一直有问题,没有运行起来,所以先使用一个别人写好的代码 上一个在ubuntu下可用的代码链接:https://gitee.com/bubbleit/JianDanWuTiShiBie  使用python2运行,python3可能会有问题 该代码由https…
import ssl ssl._create_default_https_context = ssl._create_unverified_context https://stackoverflow.com/questions/47231408/downloading-resnet50-in-keras-generates-ssl-certificate-verify-failed 2.OSError: Unable to open file (Truncated file: eof = 221…
引自:http://blog.csdn.net/sinat_26917383/article/details/72982230 之前在博客<keras系列︱图像多分类训练与利用bottleneck features进行微调(三)>一直在倒腾VGG16的fine-tuning,然后因为其中的Flatten层一直没有真的实现最后一个模块的fine-tuning. 看到github上有一份InceptionV3的fine-tuning并且可以实现. 我看到的keras微调的方式分为以下两种: fin…
引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/en/latest/ 官方文档:https://keras.io/ 文档主要是以keras2.0. . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequent…
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法. Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequential式.Model式)解读(二) 3.keras系列︱图像…
引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/en/latest/  官方文档:https://keras.io/  文档主要是以keras2.0. . . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Seq…
keras 原理: keras系列︱图像多分类训练与利用bottleneck features进行微调(三)https://blog.csdn.net/sinat_26917383/article/details/72861152 基础篇:http://www.sohu.com/a/145534864_697750 Question1: 报错1:model.add(Convolution2D(32, 3, 3, input_shape=(3, 150, 150)))ValueError: Neg…
https://www.jianshu.com/p/9da1f0756813 从编程实现角度学习Faster R-CNN(附极简实现) GoDeep 关注 2018.03.11 15:51* 字数 5820 阅读 1897评论 2喜欢 24 转载自:https://zhuanlan.zhihu.com/p/32404424 1 概述 在目标检测领域, Faster R-CNN表现出了极强的生命力, 虽然是2015年的论文, 但它至今仍是许多目标检测算法的基础,这在日新月异的深度学习领域十分难得.…
本文将利用 TorchVision Faster R-CNN 预训练模型,于 Kaggle: 全球小麦检测 上实践迁移学习中的一种常用技术:微调(fine tuning). 本文相关的 Kaggle Notebooks 可见: TorchVision Faster R-CNN Finetuning TorchVision Faster R-CNN Inference 如果你没有 GPU ,也可于 Kaggle 上在线训练.使用介绍: Use Kaggle Notebooks 那么,我们开始吧 准…
超轻量AI引擎MindSpore Lite 揭秘一下端上的AI引擎:MindSpore Lite. MindSpore Lite是MindSpore全场景AI框架的端侧引擎,目前MindSpore Lite作为华为HMS Core机器学习服务的推理引擎底座,已为全球1000+应用提供推理引擎服务,日均调用量超过3亿,同时在各类手机.穿戴感知.智慧屏等设备的AI特性上得到了广泛应用. MindSpore Lite 1.0.0 已经开源,开源之后,其接口易用性.算子性能与完备度.第三方模型的广泛支持…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/273 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…