理解ID3决策树】的更多相关文章

一.ID3决策树概述 ID3决策树是另一种非常重要的用来处理分类问题的结构,它形似一个嵌套N层的IF…ELSE结构,但是它的判断标准不再是一个关系表达式,而是对应的模块的信息增益.它通过信息增益的大小,从根节点开始,选择一个分支,如同进入一个IF结构的statement,通过属性值的取值不同进入新的IF结构的statement,直到到达叶子节点,找到它所属的“分类”标签. 它的流程图是一课无法保证平衡的多叉树,每一个父节点都是一个判断模块,通过判断,当前的向量会进入它的某一个子节点中,这个子节点…
刚才写了ID3决策树的建立,这个是通过决策树来进行预测.这里主要用到的就是XML的遍历解析,比较简单. 关于xml的解析,参考了: http://blog.csdn.net/soszou/article/details/8049220 http://lavasoft.blog.51cto.com/62575/71669/ 思路: 先将要预测的数据,例如"sunny mild normal TRUE"根据特征表变成一个map,方便后续查找,结果为 outlook sunny temper…
环境:ubuntu 16.04 python 3.6 数据来源:UCI wine_data(比较经典的酒数据) 决策树要点: 1. 如何确定分裂点(CART ID3 C4.5算法有着对应的分裂计算方式) 2. 如何处理不连续的数据,如果处理缺失的数据 3. 剪枝处理 尝试实现算法一是为了熟悉python,二是为了更好的去理解算法的一个流程以及一些要点的处理. from math import log import operator import pickle import os import n…
CART算法 原理 CART全称为Classification and Regression Tree. 回归树 相比ID3,CART遍历所有的特征和特征值,然后使用二元切分法划分数据子集,也就是每个节点都只会分裂2个分支.接着计算数据子集的总方差来度量数据子集的混乱程度,总方差越小数据子集越纯,最后选择总方差最小的划分方式对应的特征和特征值,而二元切分的依据就是将小于等于这个特征值和大于这个特征值的数据划分为两块.这里说的总方差一般就是通过数据子集的样本输出值的均方差 * 数据子集的样本个数来…
package DecisionTree; import java.io.*; import java.util.*; public class ID3 { //节点类 public class DTNode { private String attribute; private HashMap<String, DTNode> children = new HashMap<String, DTNode>(); public String getAttribute() { retur…
决策树 优点:计算复杂度不高,输出结果易于理解,对中间值的缺少不敏感,可以处理不相关特征数据 缺点:过拟合 决策树的构造 熵:混乱程度,信息的期望值 其中p(xi)是选择分类的概率 熵就是计算所有类别所有可能值包含的信息期望值,公式如下: (公式2) 构造基本思路 信息增益 = 初始香农熵-新计算得到的香农熵(混乱程度下降的多少) 创建根节点(数据) 分裂:选择合适的特征进行分裂,采取的办法是遍历每个特征,然后计算并累加每个特征值的香农熵,与其他特征所计算出来的香农熵对比,选取信息增益最大的那个…
1)熵与信息增益: 2)以下是实现代码: //import java.awt.color.ICC_ColorSpace; import java.io.*; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; //imp…
说明:每个样本都会装入Data样本对象,决策树生成算法接收的是一个Array<Data>样本列表,所以构建测试数据时也要符合格式,最后生成的决策树是树的根节点,通过里面提供的showTree()方法可查看整个树结构,下面奉上源码. Data.java package ai.tree.data; import java.util.HashMap; /** * 样本类 * @author ChenLuyang * @date 2019/2/21 */ public class Data imple…
id3:无法直接处理数值型数据,可以通过量化方法将数值型数据处理成标称型数据,但涉及太多特征划分,不建议 决策树:的最大优点在于可以给出数据的内在含义,数据形式非常容易理解: 决策树介绍:决策树分类器是带有种植的流程图,终止块表示分类结果 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不明感,可以处理不相关的数据:可以将此分类器存储于硬盘上,是个持久化的分类器 缺点:可能会发生过度匹配问题 使用数据类型:数值型和标称型 knn:不便于展现数据的内在含义:每用一次都要学习,不是持久化分类器…
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策树是tree ensemble 的基础,值得好好理解.一般而言一棵“完全生长”的决策树包含,特征选择.决策树构建.剪枝三个过程,这篇文章主要是简单梳理比较ID3.C4.5.CART算法.<统计学习方法>中有比较详细的介绍. 一…