说在开头. 出于对欧几里得的尊重,先简单介(cou)绍(ge)一(zi)下(shu).. 欧几里得,古希腊人,数学家.他活跃于托勒密一世时期的亚历山大里亚,被称为“几何之父”. 他最著名的著作<几何原本>是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书. 欧几里得也写了一些关于透视.圆锥曲线.球面几何学及数论的作品.(https://baike.baidu.com/item/欧几里得/182343?fr=aladdin) --------------------…
题意:已知青蛙1位置x,速度m,青蛙2位置y,速度n,纬线长度为l,求他们相遇时最少跳跃次数. 思路:设最小跳跃次数为k,则(x + k*m) - (y + k*n) = q*l:经过整理得到k*(n-m) + q*l = x - y:此时k和l为变量.欧几里得扩展中有线性方程a*x+b*y = c,当且仅当c是gdc(a,b)的整数倍的时候,所以这个题我们可以使用这个算法求得一个x0(x0已经被乘以了倍数),故x0为满足题意的一个解,X的解系为x0 + k[b/gcd(a,b)](具体证明不在…
原博网址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a -…
欧几里得算法: 1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求 原理:gcd(a, b)=gcd(b, a%b) 2.证明: 令d=gcd(a, b)  =>  a=m*d,b=n*d 则m*d=t*n*d+a%b  =>  a%b=d*(m-t*n) gcd(b, a%b)=gcd(n*d, (m-t*n)*d) 令gcd(n, m-t*n)=e  =>  n=x*e,m-t*n=y*e 则m-x*e*n=y*e  =>  m=e*(x*n+y) 由gcd(n, m…
BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; struct node{ static const int mo=100007; int a[100010],v…
---恢复内容开始--- 记a, b的最大公约数为gcd(a, b).显然, gcd(a,b)=gcd(|a|,|b|). 计算最大公约数的Euclid算法基于下面定理: [GCD递归定理]对于任意非负整数a和任意正整数b,gcd(a,b)=gcd(b,a%b). ============================================================= gcd(a,b)=gcd(b, a+kb) a,b,k为任意整数 即gcd(a,b)=gcd(b, a mod…
欧几里得(Euclid)与拓展的欧几里得算法 欧几里得(Euclid)与拓展的欧几里得算法 欧几里得算法 原理 实现 拓展的欧几里得算法 原理 递归求解 迭代求解 欧几里得算法 原理 欧几里得算法是一种快速计算最大公约数的算法,对于任意的两个数\((a,b)\),其最大公约数表示为\(gcd(a,b)\),根据欧几里得算法,\(gcd(a,b)=gcd(b,a\%b)\).证明如下: 如果\(b>a\),显然成立:因此只需考虑\(b<a\)的情况.根据初等数学知识,可知\(a,b\)的关系可表…
1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a positive integer n that is a product of two distinct odd primes p and q, a positive integer e such that gcd(e, (p-1)*(q-1)) = 1, and an integer c, fi…
0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézout定理 扩展欧几里得算法利用归纳法,证明了Bézout定理. Bézout定理:对于任意整数 \(a\),\(b\) ,存在一对整数 \(x\),\(y\),满足 \(ax+by=gcd(a,b)\) 在扩展欧几里得的算法中,我们求出 \(x\),\(y\) 的值. 2.证明 2.1 \(gcd\…
(点击此处查看原题) 题意分析 已知 n , p , w, d ,求x , y, z的值 ,他们的关系为: x + y + z = n x * w + y * d = p 思维法 当 y < w 的时候,我们最多通过1e5次枚举确定答案 而当 y >= w 的时候,平局所得分为:y * d = (y-w)*d + w*d ,可以看作平局的局数为 y - w ,多出的w*d贡献给 (w*d)/w = d 局胜局,所以胜局为 x + d ,说明此时用x+y局胜局和平局得到的分数可以由 x + d…