Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现: Cost Function Linear Regression Gradient Descent Normal Equation Feature Scaling Mean normalization 损失函数 线性回归 梯度下降 正规方程 特征归一化 均值标准化 Mode…
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFC…
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模模糊糊的感觉,也刚入门,虽然现在也是入门,但是对于一些概念已经有了比较深的认识(相对于最开始学习机器学习的时候).所以为了打好基础,决定再次学习一下Andrew Ng的课程,并记录笔记以供以后复习参考. 1. 内容概要 Introduction 什么是机器学习 监督学习 非监督学习 Linear R…
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述…
Andrew Ng机器学习课程6 说明 在前面尾随者台大机器学习基石课程和机器学习技法课程的设置,对机器学习所涉及到的大部分的知识有了一个较为全面的了解,可是对于没有动手敲代码并加以使用的情况,基本上是不可能掌握好的.特别是我的学习进程是袭击式的,因此.会非常快忘掉.心中仅仅剩下一个主要的纲要,所以后面要通过解说更为具体的Andrew Ng教授的机器学习课程进行回想和总结,希望能够抓住它的来龙去脉. 所以总结的内容主要是推导的思路.仅仅要能够把握住思路,就能保持长久的记忆. 主要内容 朴素贝叶斯…
Andrew Ng机器学习课程10补充 VC dimension 讲到了如果通过最小化训练误差,使用一个具有d个参数的hypothesis class进行学习,为了学习好,一般需要参数d的线性关系个训练样本.到这里需要指出一点,这个结果是基于empirical risk minimization得到的,而对于那些大部分的discriminative的学习算法采用的通过最小化training error或者training error的近似值,前面推导的结论并不总是可以用,而对于non_ERM 学…
Andrew Ng机器学习课程10 a example 如果hypothesis set中的hypothesis是由d个real number决定的,那么用64位的计算机数据表示的话,那么模型的个数一共有k=264d,那么训练样本的数量由上一节课的公式可推出训练样本的数量为: m≥O(dγ2log1δ) .为保证ERM在这样的hypothesis set上能够达到一定的error bound,训练样本的数量需要达到上式得要求. VC dimension 假定有d个点的数据集S,hypothesi…
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮…
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式) Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数) Andrew Ng机器学习课程笔记--week4(神经网络) Andrew Ng机器学习课程笔记--week5(上)(神经网络损失函数&反向传播算法) Andrew Ng机器学习课程笔记--week5(下)(…