#include<stdio.h> void hanoi(int n, char x, char y, char z); void move(char x, char y); int times = 0; //表示移动圆盘的次数 void main() { setvbuf(stdout, NULL, _IONBF, 0); //使用eclipse开发环境时必须包含这个语句.不允许printf()函数输出到缓冲区,而是直接输出. int m; printf("input the num…
3.4 In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of different sizes which can slide onto any tower. The puzzle starts with disks sorted in ascending order of size from top to bottom (i.e., each disk sits on top of an e…
汉诺塔介绍: 汉诺塔(港台:河内塔)是根据一个传说形成的数学问题: 最早发明这个问题的人是法国数学家爱德华·卢卡斯. 传说越南河内某间寺院有三根银棒,上串 64 个金盘.寺院里的僧侣依照一个古老的预言,以上述规则移动这些盘子:预言说当这些盘子移动完毕,世界就会灭亡.这个传说叫做梵天寺之塔问题(Tower of Brahma puzzle).但不知道是卢卡斯自创的这个传说,还是他受他人启发. 若传说属实,僧侣们需要 \(2^{64}-1\)步才能完成这个任务:若他们每秒可完成一个盘子的移动,就需要…
题目描述 Description 有N个圆盘,依半径大小(半径都不同),自下而上套在A柱上,每次只允许移动最上面一个盘子到另外的柱子上去(除A柱外,还有B柱和C柱,开始时这两个柱子上无盘子),但绝不允许发生柱子上出现大盘子在上,小盘子在下的情况,现要求设计将A柱子上N个盘子搬移到C柱去的方法. 输入输出格式 Input/output 输入格式:一行,n<=20输出格式: 步数及各种圆盘要移动的步骤 输入输出样例 Sample input/output 样例测试点#1 输入样例: 2 输出样例:…
//汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. #include <stdio.h> #include <stdlib.h> //汉诺塔使用递归可以很轻松但有点抽象的解决. //汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的…
知识点 这节课主要讲解用递归的方法,实现汉诺塔的解答 对于游戏的玩法,我们可以简单分解为三个步骤: 1) 将前63个盘子从X移动到Y上. 2) 将最底下的第64个盘子从X移动到Z上. 3) 将Y上的63个盘子移动到Z上. 问题一:将X上的63个盘子借助Z移到Y上: 1) 将前62个盘子从X移动到Z上. 2) 将最底下的第63个盘子移动到Y上. 3) 将Z上的62个盘子移动到Y上. 问题二:将Y上的63个盘子借助X移到Z上. 1) 将前62个盘子从Y移动到X上. 2) 将最底下的第63个盘子移动到…
百度测试部2015年10月份的面试题之——汉诺塔. 汉诺塔就是将一摞盘子从一个塔转移到另一个塔的游戏,中间有一个用来过度盘子的辅助塔. 百度百科在此. 游戏试玩在此. 用递归的思想解决汉诺塔问题就是分为两种情况: 第一种情况是只有一个盘子的情况,也就是最基本的情况,这种情况下,直接将该盘子从原始塔转移到目标塔即可胜利: 第二种情况是右n个盘子的情况,也就是普遍情况,这种情况下,要将除了最底下的那个盘子以外的(n-1)个盘子从原始塔转移到辅助塔,再把最底下的那个盘子(第n个盘子)从原始塔转移到目标…
//Hanoi(汉诺)塔问题.这是一个古典的数学问题,用递归方法求解.问题如下: /* 古代有一个梵塔,塔内有3个座A,B,C,开始时A座上有64个盘子,盘子大小不等,大的在下,小的在上. 有一个老和尚想把这64个盘子从A座移动到C座,但规定每次只允许移动一个盘,且在移动过程中在3个座上 都始终保持大盘在下,小盘在上.在移动过程中可以利用B座.要求编程序输出移动盘子的步骤. */ #include<stdio.h> #include<stdlib.h> int main() { /…
用C语言实现汉诺塔自动递归演示程序 程序实现效果 1.变界面大小依照输入递归数改变. 2.汉诺塔自动移动演示. 3.采用gotoxy实现流畅刷新. 4.保留文字显示递归流程 程序展示及实现 github地址:https://github.com/404name/C-game 0.主体思路 输入要递归的汉诺塔数目,在原来的汉诺塔基础上新增move_play函数展示递归,用next数组存储每种移动状态.对应的从哪到哪可自动对应相应的移动方式自动移动. 1.变界面大小依照输入递归数改变 init函数按…
5.1.5 函数的递归调用 在函数调用中,通常我们都是在一个函数中调用另外一个函数,以此来完成其中的某部分功能.例如,我们在main()主函数中调用PowerSum()函数来计算两个数的平方和,而在PowerSum()函数中,又调用Power()函数和Add()函数来计算每个数的平方并将两个平方加和起来成为最终的结果.除此之外,在C++中还存在另外一种特殊的函数调用方式,那就是在一个函数内部调用它自己本身,这种方式也被称为函数的递归调用. 函数的递归调用,实际上是实现函数的一种特殊方式.当递归函…
c语言可以将代码模块化,这是其很重要的一个特性. 说道代码模块化,我们很自然的就会联想到函数.而函数中,比较难的一个知识点就是函数的递归调用. 值得注意的是,函数的递归调用在现实工作并不是很常用,但是涉及到算法或者是学校的考试的话,那这个知识点就成了必考的内容.所以,骚年,躲是躲不掉滴~~ 好了,言归正传,首先,我们通过一个例子来具体看一下函数的递归调用. 例如,大家假期结束返回学校,生活费肯定是不可少的,什么?你说你不用生活费?原谅我不知道你是怎么活下来的-- 于是,你就问A室友带了多少生活费…
1.什么是迭代器 迭代是一个重复的过程,但是每次重复都是基于上一次重复的结果而继续 迭代取值的工具 2.为什么要用迭代器 迭代器的优点 ​ ①不依赖于索引取值 ​ ②更节省内存 缺点: ​ 1.不如按照索引取值方式灵活 ​ 2.取值一次性的,只能往后取,无法预测值的个数 3.为何要用迭代器: 可迭代对象:但凡内置有__iter__方法的对象 iterable :str\list\tuple\dic\set\文件 迭代器对象 iterator 即内置有__iter__,又有__next__方法的…
using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExample_Hanoi_{    class Program    {        static void Main(string[] args)        {            HanoiCalculator c = new HanoiCalculator();            Cons…
C语言解决汉诺塔问题 汉诺塔是典型的递归调用问题: hanoi简介:印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽. --图片来源于百度百科 A,B,C三个柱子,当A柱子上只有一个盘子时直接将该盘子从A柱子移…
Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; public class HanoiTower { public static void main(String[] args) { // TODO Auto-generated method stub @SuppressWarnings("resource") Scanner sc=new Sc…
汉诺塔问题源于印度的一个古老传说:梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.梵天命令婆罗门把圆盘按大小顺序重新摆放在另一根柱子上,并且规定小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘.当所有的黄金圆盘都重新摆放在另一根柱子上时,世界就将在霹雳声中毁灭,梵塔.庙宇和众生都将同归于尽. 假设A是起始柱,B是中间柱,C是目标柱. 从最简单的例子开始看: 如果A柱上只剩一个圆盘,那么将圆盘从A柱移到C柱即可. (A --> C) 如果A柱上剩两…
汉诺塔是一个印度的古老传说.有三个圆柱,其中一个圆柱上放着若干圆盘,这些圆盘从上到下,直径递增,利用一个辅助圆柱,将原来柱子上的圆盘放到另一个柱子上,依旧是从上到下直径递增. 汉诺塔是一个经典的递归案例. var hanoi = function(disc,src,aux,dst){ ){ hanoi(disc-,src,dst,aux); document.writeln('Move disc ' + disc + ' from ' + src + ' to ' + dst + "<br…
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 三层汉诺塔的完整移动过程 递归分析:利用递归的思想分析 通过以上图解的方式,发现三层汉诺塔最终可以转换成二层汉诺塔,同时只需要对一层的汉诺塔进行单独处理即可.同样的,四层汉诺塔.五层汉诺塔乃至n层汉诺塔最…
Go递归实现汉诺塔 package main import "fmt" // a 是源,b 借助, c 目的长度 func tower(a, b, c string, layer int) { if layer == 1 { fmt.Println(a, "111->", c) return } // n-1 个 a 借助 c 到 b tower(a, c, b, layer-1) fmt.Println(a, "11->", c)…
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思想. 这个是常见的一种数学算法,其实它就是递归的本质.我们要求的是所有数的乘积,那么我们就先求出两个数的乘积,然后再根据这两个数的乘积去求第三个数的乘积,这样每一次我们实际上都是进行的两个数的相乘,也就是我们把一个很多个数的相乘转换为了两个数的相乘. 2.通过上面的例子可以发现,递归就是将大型复杂问…
前言 参考<JavaScript语言精粹> 递归是一种强大的编程技术,他把一个问题分解为一组相似的子问题,每一问题都用一个寻常解去解决.递归函数就是会直接或者间接调用自身的一种函数,一般来说,一个递归函数调用自身去解决它的子问题. "汉诺塔"经典递归问题 "汉诺塔"是印度的一个古老传说,也是程序设计中的经典的递归问题,是一个著名的益智游戏: 题目如下: 塔上有三根柱子和一套直径各不相同的空心圆盘,开始时源柱子上的所有圆盘都按从大到小的顺序排列.目标是通过…
# -*- coding: utf-8 -*- #汉诺塔移动问题 # 定义move(n,a,b,c)函数,接受参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量 # 然后打印出把所有盘子从A借助B移动到C的方法 def move(n,a,b,c): if n==1: print('move', a, '-->', c) else: move(n-1,a,c,b) move(1,a,b,c) move(n-1,b,a,c) move(5,'A','B','C') #计算移动步数 def f(n…
参考文章:http://www.cnblogs.com/dmego/p/5965835.html   一句话:学程序不是目的,理解就好:写代码也不是必然,省事最好:拿也好,查也好,解决问题就好!   信息时代不用信息就是罪过,直接抄不加理解与应用,就不是自己的,下次遇到还是不会,或许其中的某一个细节就能够用于各个问题的解决,共勉   学习一个东西总会遇到一些经典的问题,学习Python第二天尝试看一下汉诺塔问题,还是百度,看看解题思路,纯粹是重温初中课堂,越活越回去了    汉诺塔的图解递归算法…
一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始报数,报到m时停止报数,报m的那个人出列,将他的密码作为新的m值,从他顺时针方向的下一个人开始重新从1报数,数到m的那个人又出列:如此下去,直到圆桌周围的人全部出列为止. 一般情况下,循环链表就可以解决这个问题,但是我正在学习递归,所以就递归实现了,下面附上代码: #inclu…
汉诺塔(又称河内塔)问题其实是印度的一个古老的传说. 开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一 个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上 面.计算结果非常恐怖(移动圆片的次数)18446744073709551615,众僧们即便是耗尽毕生精力也不可能完成金片的移动了. 算法介绍:其实算法非常简单,…
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 简单来说目的就是要我们把盘子按照规则从A移到C 二.思路 此处我用递归的思想理解汉诺塔问题.递归的思想容易理解,但是运用在代码上的算法并不是解决汉诺塔问题的最佳算法. 我们初定有n个盘子,…
问题描述: 有一个梵塔,塔内有三个座A.B.C,A座上有诺干个盘子,盘子大小不等,大的在下,小的在上(如图). 把这些个盘子从A座移到C座,中间可以借用B座但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘 子始终保持大盘在下,小盘在上. 描述简化:把A柱上的n个盘子移动到C柱,其中可以借用B柱. #include <bits/stdc++.h> using namespace std; void move(int n, char f, char t) { ; printf("…
有三根柱子一次为A,B,C 现在A柱子上有3个块,按照汉诺塔规则移动到C柱子上去,打印步骤? 我们这样理解:A为原始柱,C为目标柱,B为缓冲柱 1.定义一个函数move(n,a,b,c),n为原始柱上面的块数,a为原始柱名称,b为缓冲柱,c为目标柱 def move(n,a,b,c): pass 2.首先,我们假定原始柱上只有一个块,那就是直接从原始柱移动到目标柱,无需经过缓冲柱 def move(n,a,b,c): if n == 1: print(a,'-->',c) else: pass…
 算法介绍: 其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n - 1(有兴趣的可以自己证明试试看).后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了.首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C: 若n为奇数,按顺时针方向依次摆放 A C B. (1)按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B:若…
目前前端新手,看到的不喜勿喷,还望大神指教. 随着Node.js,Angular.js,JQuery的流行,点燃了我学习JavaScript的热情!以后打算每天早上跟晚上抽2小时左右时间将经典的算法都用JS来实现,加快学习JS的步伐(用这个办法方便跟自己以前学过的C++语言作对比,找出不同),希望自己能够坚持下去!!! 首先来个汉诺塔的. <script>      function hanoi(n,a,b,c){          if(n==1){              documen…