首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
R语言 决策树算法
】的更多相关文章
R语言 决策树算法
定义: 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法. 目前我们会用到的主流的决策树算法包括:ID3,C4.5,CART等. ID3算法是以信息增益为准则选择信息增益最大的属性,信息增益对可取值数目较多的属性有所偏好,比如通过ID号可将每个样本分成一类,但是没有意义.同时ID3只能对离散属性的数据集构造决策树. c4.5算法是以信息增益率为准则选择…
机器学习-决策树算法+代码实现(基于R语言)
分类树(决策树)是一种十分常用的分类方法.核心任务是把数据分类到可能的对应类别. 他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类. 决策树的理解 熵的概念对理解决策树很重要 决策树做判断不是百分之百正确,它只是基于不确定性做最优判断. 熵就是用来描述不确定性的. 案例:找出共享单车用户中的推荐者 解析:求出哪一类人群更可能成为共享单车的推荐者.换句话说是推荐者与其他变量之间不…
[转]机器学习——C4.5 决策树算法学习
1. 算法背景介绍 分类树(决策树)是一种十分常用的分类方法.它是一种监管学习,所谓监管学习说白了很简单,就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类.这样的机器学习就被称之为监督学习.C4.5分类树就是决策树算法中最流行的一种.下面给出一个数据集作为算法例子的基础,比如有这么一个数据集,如下: 我们将以这个数据集作讨论的基础.进行分类的目的就是根据某一天的天气状态,如天气,温度,湿度,是否刮风,来…
零基础数据分析与挖掘R语言实战课程(R语言)
随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况可见一斑.于是善于学习的程序员们开始了R语言的学习 之旅.对于有其他语言背景的程序员来说,学习R的语法小菜一碟,因为它的语法的确太简单了,甚至有的同学说1周就能掌握R语言,的确如 此.但是之后呢?……好像进行不下去了!死记硬背记住了两个分析模型却不明其意,输出结果如同天书不会解读,各种参数全部使用缺…
大数据时代的精准数据挖掘——使用R语言
老师简介: Gino老师,即将步入不惑之年,早年获得名校数学与应用数学专业学士和统计学专业硕士,有海外学习和工作的经历,近二十年来一直进行着数据分析的理论和实践,数学.统计和计算机功底强悍. 曾在某一世界500强公司核心部门担任高级主管负责数据建模和分析工作,在实践中攻克统计建模和数据分析难题无数,数据处理与分析科学精准,在实际应用中取得良好的效果. Gino老师担任数据分析培训师多年,探索出一套以实例讲解带动统计原理理解和软件操作熟悉的方法,授课的学生能迅速理解统计原理并使用统计软件独立开展数…
R语言进行机器学习方法及实例(一)
版权声明:本文为博主原创文章,转载请注明出处 机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有价值的东西. 机器学习一般步骤 收集数据,将数据转化为适合分析的电子数据 探索和准备数据,机器学习中许多时间花费在数据探索中,它要学习更多的数据信息,识别它们的微小差异 基于数据训练模型,根据你要学习什么的设想,选择你要使用的一种或多种算法 评价模型的性能,需要依据一定的检验标准 改进模型的性能,有…
R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgboost(回归)双案例解读
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 -------------------------------------------------- 一.XGBoost来历 xgboost的全称是eXtreme Gradient Boosting.正如其名,它是Gradient Boosting Machine的一个c++实现,作者为正在华盛顿大学研究机器学习的大牛陈天奇.他在研究中深感自己受制于现有库的计…
R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----…
R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就是是注释. R是动态类型.强类型的语…
用R语言实现对不平衡数据的四种处理方法
https://www.weixin765.com/doc/gmlxlfqf.html 在对不平衡的分类数据集进行建模时,机器学**算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性那么,这种结果是为何发生的呢?到底是什么因素影响了这些算法的表现? 在不平衡的数据中,任一算法都没法从样本量少的类中获取足够的信息来进行精确预测因此,机器学**算法常常被要求应用在平衡数据集上那我们该如何处理不平衡数据集?本文会介绍一些相关方法,它们并不复杂只是技巧性比较强 本文会介绍处理非…
R语言学习笔记—决策树分类
一.简介 决策树分类算法(decision tree)通过树状结构对具有某特征属性的样本进行分类.其典型算法包括ID3算法.C4.5算法.C5.0算法.CART算法等.每一个决策树包括根节点(root node),内部节点(internal node)以及叶子节点(leaf node). 根节点:表示第一个特征属性,只有出边没有入边,通常用矩形框表示. 内部节点:表示特征属性,有一条入边至少两条出边,通常用圆圈表示. 叶子节点:表示类别,只有一条入边没有出边,通常用三角表示. 决策树算法主要用于…
【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间的语句就…
R语言笔记完整版
[R笔记]R语言函数总结 R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(…
机器学习十大算法总览(含Python3.X和R语言代码)
引言 一监督学习 二无监督学习 三强化学习 四通用机器学习算法列表 线性回归Linear Regression 逻辑回归Logistic Regression 决策树Decision Tree 支持向量机SVM Support Vector Machine 朴素贝叶斯Naive Bayes K近邻KNN K- Nearest Neighbors K均值K-Means K-means如何形成群类 随机森林Random Forest 降维算法Dimensionality Reduction Algo…
【转】R语言函数总结
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达式(expressions)要么就是 赋值(assignments). 命令可以被 (;)隔开,或者另起一行. 基本命令可以通过大括弧({和}) 放在一起构成一个复合表达式(compound expression). 一行中,从井号(#)开始到句子收尾之间…
Kaggle竞赛入门:决策树算法的Python实现
本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的废话,毕竟英文有的时候比较啰嗦. 一.决策树算法基本原理 背景:假设你的哥哥是一个投资房地产的大佬,投资地产赚了很多钱,你的哥哥准备和你合作,因为你拥有机器学习的知识可以帮助他预测房价.你去问你的哥哥他是如何预测房价的,他告诉你说他完全是依靠直觉,但是你经过调查研究发现他预测房价是根据房价以往的表现…
【机器学习与R语言】4-决策树
目录 1.决策树原理 2.决策树应用示例 2.1)收集数据 2.2)探索和准备数据 2.3)训练模型 2.4)评估模型性能 2.5)提高模型性能 通过自适应增强算法(boosting) 将惩罚因子分配到不同类型的错误上 1.决策树原理 决策树:树形结构流程图(漏斗型),模型本身包含一些列逻辑决策.数据分类从根节点开始,根据特征值遍历树上的各个决策节点. 几乎可应用于任何类型的数据建模,且性能不错.但当数据有大量多层次的名义特征或者大量的数值特征时,可能会生成一个过于复杂的决策树. 递归划分/分而…
决策树及R语言实现
决策树是什么 决策树是基于树结构来进行决策,这恰是人类在面临决策问题时一种很自然的处理机制.例如,我们要对"这是好瓜吗?"这样的问题进行决策时,通常会进行一系列的判断或"子决策":我们先看"它是什么颜色?",如果是"青绿色",则我们再看"它的根蒂是什么形态?",如果是"蜷缩",我们再判断"它敲起来是什么声音?",最后我们得出决策:这是一个好瓜.这个决策如图所示: 决策…
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…
4-Spark高级数据分析-第四章 用决策树算法预测森林植被
预测是非常困难的,更别提预测未来. 4.1 回归简介 随着现代机器学习和数据科学的出现,我们依旧把从“某些值”预测“另外某个值”的思想称为回归.回归是预测一个数值型数量,比如大小.收入和温度,而分类则指预测标号或类别,比如判断邮件是否为“垃圾邮件”,拼图游戏的图案是否为“猫”. 将回归和分类联系在一起是因为两者都可以通过一个(或更多)值预测另一个(或多个)值.为了能够做出预测,两者都需要从一组输入和输出中学习预测规则.在学习的过程中,需要告诉它们问题及问题的答案.因此,它们都属于所谓的监督学习.…
就是要你明白机器学习系列--决策树算法之悲观剪枝算法(PEP)
前言 在机器学习经典算法中,决策树算法的重要性想必大家都是知道的.不管是ID3算法还是比如C4.5算法等等,都面临一个问题,就是通过直接生成的完全决策树对于训练样本来说是“过度拟合”的,说白了是太精确了.由于完全决策树对训练样本的特征描述得“过于精确” ,无法实现对新样本的合理分析, 所以此时它不是一棵分析新数据的最佳决策树.解决这个问题的方法就是对决策树进行剪枝,剪去影响预测精度的分支.常见的剪枝策略有预剪枝(pre -pruning)技术和后剪枝(post -pruning )技术两种.预剪…
机器学习与R语言
此书网上有英文电子版:Machine Learning with R - Second Edition [eBook].pdf(附带源码) 评价本书:入门级的好书,介绍了多种机器学习方法,全部用R相关的包实现,案例十分详实,理论与实例结合. 目录 第一章 机器学习简介 第二章 数据的管理和理解 第三章 懒惰学习--使用近邻分类 第四章 概率学习--朴素贝叶斯分类 第五章 分而治之--应用决策树和规则进行分类 第六章 预测数值型数据--回归方法 第七章 黑箱方法--神经网络和支持向量机 第八章 探…
转载:scikit-learn学习之决策树算法
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 ===========================================…
ID3决策树算法原理及C++实现(其中代码转自别人的博客)
分类是数据挖掘中十分重要的组成部分.分类作为一种无监督学习方式被广泛的使用. 之前关于"数据挖掘中十大经典算法"中,基于ID3核心思想的分类算法C4.5榜上有名.所以不难看出ID3在 数据分类中是多么的重要了. ID3又称为决策树算法,虽然现在广义的决策树算法不止ID3一种,但是由于ID3的重要性,习惯是还是把ID3 和决策树算法等价起来. 另外无监督学习方式我还要多说两句.无监督学习方式包括决策树算法,基于规则的分类,神经网络等.这些分 类方式是初始分类已知,将样本分为训练样本和测试…
数据分析与R语言
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵…
R语言和数据分析十大:购物篮分析
提到数据挖掘,我们的第一个反应是之前的啤酒和尿布的故事听说过,这个故事是一个典型的数据挖掘关联规则.篮分析的传统线性回归之间的主要差别的差别,对于离散数据的相关性分析: 常见的关联规则: 关联规则:牛奶=>卵子[支撑=2%,置信度=60%] 支持度:分析中的所有事务的2%同一时候购买了牛奶和鸡蛋,需设定域值,来限定规则的产生. 置信度:购买了牛奶的筒子有60%也购买了鸡蛋,需设定域值,来限定规则的产生. 最小支持度阈值和最小置信度阈值:由挖掘者或领域专家设定. 与关联分析相关的专业术语包含: 项…
R语言分析(一)-----基本语法
一, R语言所处理的工作层: 解释一下: 最下面的一层为数据源,往上是数据仓库层,往上是数据探索层,包括统计分析,统计查询,还有就是报告 再往上的三层,分别是数据挖掘,数据展现和数据决策. 由上图可知,R语言是可以用于数据挖掘,数据展现,而后领导根据展现的数据来决策,R语言在数据展现的方面,拥有很强大的功能. 二,R语言的数据结构: 包括如下的几项:包括向量,矩阵,数组,数据框,列表和因子 1,向量: 创建向量的方法一共有三种,分别如下: 第一种,使用c()的这个方法: 由于博客中木有R语言…
碎片︱R语言与深度学习
笔者:受alphago影响,想看看深度学习,但是其在R语言中的应用包可谓少之又少,更多的是在matlab和python中或者是调用.整理一下目前我看到的R语言的材料: ------------------------------------------------------------ 近期,弗莱堡大学的Oksana Kutina 和 Stefan Feuerriegel发表了一篇名为<深入比较四个R中的深度学习包>的博文.其中,四个R包的综述如下: MXNet: MXNet深度学习库的R接…
数据攻略●R语言自述
(注明:以下文章均在Linux操作系统下执行) 一.R语言简介 R语言是用于统计分析,图形表示和报告的编程语言和软件环境.R语言由Ross Ihaka和Robert Gentleman在新西兰奥克兰大学创建,目前由R语言开发核心团队开发. R语言的核心是解释计算机语言,其允许分支和循环以及使用函数的模块化编程.R语言允许与以C,C ++,.Net,Python或FORTRAN语言编写的过程集成以提高效率. R语言在GNU通用公共许可证下免费提供,并为各种操作系统(如Linux,Windows和M…
R语言之Random Forest随机森林
什么是随机森林? 随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法.随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”.“森林”我们很好理解,一棵叫做树,那么成百上千棵就可以叫做森林了,这样的比喻还是很贴切的,其实这也是随机森林的主要思想--集成思想的体现. 随机森林算法的实质是基于决策树的分类器集成算法,其中每一棵树都依赖于一个随机向量,随机森林的所有向量都是独立同分布…