SVM与LR的比较】的更多相关文章

对于异常数据,SVM比LR更好 SVM的优缺点: 优点:1.提供非常精确的分类器 2.更少的过拟合(因为有L2正则化项0.5||w||2),对噪声数据更加鲁棒(因为损失函数的原因) 缺点:1.SVM是一个二分类器,要多分类器需要采用1vs1或者1vs all ,(尼莫... 2.SVM对大规模训练样本难以实施,compute expensive ,thus run low…
两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss.这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重.SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器.而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重.两者的根本目的都是一样的.此外,根据需要,两个方法都可以增加不同的正则化项…
首先,SVM和LR(Logistic Regression)都是分类算法.SVM通常有4个核函数,其中一个是线性核,当使用线性核时,SVM就是Linear SVM,其实就是一个线性分类器,而LR也是一个线性分类器,这是两者的共同之处. 不同之处在于,第一,LR只要求计算出一个决策面,把样本点分为两类就行了,不要求分得有多好:而Linear SVM要求决策面距离两个类的点的距离要最大. 第二,Linear SVM只考虑边界线附近的点,而LR要考虑整个样本所有的点,如果增加一些样本点,只要这些样本点…
先看数据: 特征如下: Time Number of seconds elapsed between each transaction (over two days) numeric V1 No description provided numeric V2 No description provided numeric V3 No description provided numeric V4 No description provided numeric V5 No description…
一.LR LR,DT,SVM都有自身的特性,首先来看一下LR,工业界最受青睐的机器学习算法,训练.预测的高效性能以及算法容易实现使其能轻松适应工业界的需求.LR还有个非常方便实用的额外功能就是它并不会给出离散的分类结果,而是给出该样本属于各个类别的概率(多分类的LR就是softmax),可以尝试不同的截断方式来在评测指标上进行同一模型的性能评估,从而得到最好的截断分数.LR不管是实现还是训练或者预测都非常高效,很轻松的handle大规模数据的问题(同时LR也很适合online learning)…
LR & SVM 的区别 相同点 LR和SVM都是分类算法. 如果不考虑核函数,LR和SVM都是线性分类算法,也就是说他们的分类决策面都是线性的. LR和SVM都是监督学习算法. LR和SVM都是判别模型. 不同点 损失函数不一样 支持向量机只考虑局部的边界线附近的点,而逻辑回归考虑全局(远离的点对边界线的确定也起作用). 在解决非线性问题时,支持向量机采用核函数的机制,而LR通常不采用核函数的方法在计算决策面时,SVM算法里只有少数几个代表支持向量的样本参与了计算,也就是只有少数几个样本需要参…
之前一篇博客中介绍了Logistics Regression的理论原理:http://www.cnblogs.com/bentuwuying/p/6616680.html. 在大大小小的面试过程中,经常会有这个问题:"请说一下逻辑回归(LR)和支持向量机(SVM)之间的相同点和不同点".现在整理一下,希望对以后面试机器学习方向的同学有所帮助. (1)为什么将LR和SVM放在一起来进行比较? 回答这个问题其实就是回答LR和SVM有什么相同点. 第一,LR和SVM都是分类算法. 看到这里很…
原文:http://blog.sina.com.cn/s/blog_818f5fde0102vvpy.html 在大大小小的面试过程中,多次被问及这个问题:“请说一下逻辑回归(LR)和支持向量机(SVM)之间的相同点和不同点”.第一次被问到这个问题的时候,含含糊糊地说了一些,大多不在点子上,后来被问得多了,慢慢也就理解得更清楚了,所以现在整理一下,希望对以后面试机器学习方向的同学有所帮助(至少可以瞎扯几句,而不至于哑口无言ha(*^-^*)). (1)为什么将LR和SVM放在一起来进行比较? 回…
一.SVM 1.应用场景: 文本和图像分类. 2.优点: 分类效果好:有效处理高维空间的数据:无局部最小值问题:不易过拟合(模型中含有L2正则项): 3.缺点: 样本数据量较大需要较长训练时间:噪声不能太多:对缺失数据敏感: 二.决策树   1.应用: 金融和电子商务 2.优点: 同时处理多种类型的数据:适合大量样本的数据:对部分数据缺失不敏感: 3.缺点: 容易过拟合:对属性具有强关联性时效果不好: 三.adaboost 1.应用: 特征选择:回归问题: 2.优点: 精度高:不易过拟合: 3.…
之前整理过一篇关于逻辑回归的帖子,但是只是简单介绍了一下了LR的基本思想,面试的时候基本用不上,那么这篇帖子就深入理解一下LR的一些知识,希望能够对面试有一定的帮助. 1.逻辑斯谛分布 介绍逻辑斯谛回归模型之前,首先看一个并不常见的概率分布,即逻辑斯谛分布.设X是连续随机变量,X服从逻辑斯谛分布是指X具有如下的累积分布函数和概率密度函数: 式中,μ为位置参数,γ>0为形状参数.逻辑斯谛的分布的密度函数f(x)和分布函数F(x)的图形如下图所示.其中分布函数属于逻辑斯谛函数,其图形为一条S形曲线.…