定义:seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同吗,设置的seed()值仅一次有效. 接下来我们根据定义进行逐句解析: 一.如果使用相同的seed( )值,则每次生成的随即数都相同 编写代码如下: from numpy import * num=0 while(num<10): random.seed(4) print(random.ra…
先贴参考链接: https://stackoverflow.com/questions/21494489/what-does-numpy-random-seed0-do numpy.random.seed(num):如果使用相同的num,则每次生成的随机数都相同. 1.无num参数 代码: import numpy as np for i in range(5): np.random.seed() perm = np.random.permutation(10) print(perm) 结果:…
numpy.random.seed():用于指定随机数生成时使用算法的开始值,如果没有指定每次生成的值都不一样 如果不指定seed的值,那么每次随机生成的数字都不一样: In [17]: import numpy as np In [18]: i = 0 In [19]: while i < 5: ...: print(np.random.random()) ...: i += 1 ...: 0.6024396750158225 0.9269520884112016 0.012892523215…
>>>> numpy.random.seed(0) ; numpy.random.rand(4) array([ 0.55,  0.72,  0.6 ,  0.54]) >>> numpy.random.seed(0) ; numpy.random.rand(4) array([ 0.55,  0.72,  0.6 ,  0.54]) 当我们设置相同的seed,每次生成的随机数相同.如果不设置seed,则每次会生成不同的随机数 >>> numpy…
numpy.random模块中常用函数解析 numpy.random模块官方文档 1. numpy.random.rand(d0, d1, ..., dn)Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1)按照给定形状产生一个多维数组,每个元素在0到1之间注意: 这里定义数组形状时,不能采用tuple import numpy…
在python数据分析的学习和应用过程中,经常需要用到numpy的随机函数,由于随机函数random的功能比较多,经常会混淆或记不住,下面我们一起来汇总学习下. import numpy as np 1 numpy.random.rand() numpy.random.rand(d0,d1,…,dn) rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1 dn表格每个维度 返回值为指定维度的array np.random.rand(4,2)   array([[ 0.0217390…
NumPy的随机函数子库numpy.random 导入模块:import numpy as np 1.numpy.random.rand(d0,d1,...,dn) 生成一个shape为(d0,d1,..,dn)的n+1维数组,元素类型为浮点数,元素大小范围是[0,1),均匀分布,随机产生. 例:print(np.random.rand(2, 4, 3)) # 生成形状(2, 3, 4)的数组,元素范围[0,1) 输出: [[[0.08107628 0.04956067 0.83403251]…
from numpy import random numpy.random.uniform(low=0.0, high=1.0, size=None) 生出size个符合均分布的浮点数,取值范围为[low, high),默认取值范围为[0, 1.0) >>> random.uniform() 0.3999807403689315 >>> random.uniform(size=1) array([0.55950578]) >>> random.unif…
在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同. numpy.randn.randn(d0,d1,...,dn) randn函数根据给定维度生成大概率在(-2.58~+2.58)之间的数据 randn函数返回一个或者一组样本,具有标准正态分布 dn表示每个维度 返回值为指定维度的array import numpy as np a = np.random.randn(2,4) #4*2矩阵 print(a) b = np.ra…
np.random.seed()函数可以保证生成的随机数具有可预测性. 可以使多次生成的随机数相同 1.如果使用相同的seed( )值,则每次生成的随即数都相同: 2.如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同. 在机器学习和深度学习中,如果要保证部分参数(比如W权重参数)的随机初始化值相同,可以采用这种方式来实现.…
在使用numpy时,难免会用到随机数生成器.我一直对np.random.seed(),随机数种子搞不懂.很多博客也就粗略的说,利用随机数种子,每次生成的随机数相同. 我有两个疑惑:1, 利用随机数种子,每次生成的随机数相同.这是什么意思? 2,随机数种子的参数怎么选择?在别人的代码中经常看到np.random.seed(Argument),这个参数不一样,有的是0,有的是1,当然还有其他数.那这个参数应该怎么选择呢? 通过对别的博客的理解,我做了以下几组实验: 1.以np.random.rand…
np.random.seed()用法: np.random.seed(5) print(np.random.permutation(np.array([i for i in range(9)]))) np.random.seed(5) print(np.random.permutation(np.array([i for i in range(9)]))) [2 4 8 7 1 0 5 6 3] [2 4 8 7 1 0 5 6 3] np.random.seed(5) print(np.ran…
124.np.random.seed()的作用 陈容喜 关注 2018.01.11 21:36 字数 3 阅读 4460评论 0喜欢 6 今天看到一段代码时遇到了np.random.seed(),搞不清楚的seed()作用是什么,特地查了一下资料,原来每次运行代码时设置相同的seed,则每次生成的随机数也相同,如果不设置seed,则每次生成的随机数都会不一样.例如:   seed作用.png 源码: # coding: utf-8 # # np.random.seed()的作用 # ### 当我…
结论: np.random.seed(a) # 按照规定的顺序生成随机数 # 参数a指定了随机数生成的起始位置: # 如果两处都采用了np.random.seed(a),且两处的参数a相同,则生成的随机数也相同: # 不同的参数a执行了随机数生成的不同位置:随便选即可: 验证: 1.以np.random.randn()函数为例 import numpy as np if __name__ == '__main__': i = 0 while(i < 6): if(i < 3): np.rand…
随机抽样 (numpy.random) 简单的随机数据 rand(d0, d1, ..., dn) 随机值 >>> np.random.rand(3,2) array([[ 0.14022471, 0.96360618], #random [ 0.37601032, 0.25528411], #random [ 0.49313049, 0.94909878]]) #random randn(d0, d1, ..., dn) 返回一个样本,具有标准正态分布. Notes For rando…
在科学技术和机器学习等其他算法相关任务中,我们经常需要用到随机数,为了把握随机数的生成特性,从随机数的随机无序中获得确定和秩序.我们可以利用随机数种子(random seed)来实现这一目标,随机数种子,可以使得引入了随机数的整个程序,在多次运行中得到确定的,一致的结果. 很多博文谈到随机数种子,只是简单论及,利用随机数种子,可以每次生成相同的随机数.想真正用好掌握它,对此很容易产生疑惑,生成相同的随机数数怎么个相同法?随机数种子又作何用处? 1. 随机数种子 下面我们从实例中揭开随机数种子的神…
用seed()生成随机数字,生成的法则与seed内部的数字相关,如果数字相同,则生成的随机数是相同的. 刷题宝上面的题目: >>> import random >>> random.seed(1) >>> x=[random.randint(1,5) for i in range(5)] >>> x [1, 5, 4, 2, 3] >>> x=[random.randint(1,5) for i in range(5…
0. numpy.random中的shuffle和permutation numpy.random.shuffle(x) and numpy.random.permutation(x),这两个有什么不同,或者说有什么关系? 答: np.random.permutation与np.random.shuffle有两处不同: 如果传给permutation一个矩阵,它会返回一个洗牌后的矩阵副本:而shuffle只是对一个矩阵进行洗牌,无返回值. 如果传入一个整数,它会返回一个洗牌后的arange. 上…
# *_*coding:utf-8 *_* # athor:auto import numpy.random #rand(d0, d1, ..., dn)n维随机值 data0 = numpy.random.rand(3,2) print(data0) # [[ 0.32795061 0.57825984] # [ 0.29511226 0.64076698] # [ 0.3778223 0.23230085]] print('===========================') data…
1.numpy.random.shuffle(x) 参数:填入数组或列表. 返回值:无. 函数功能描述:对填入的数组或列表进行乱序处理,shape保持不变. 2.numpy.random.permutation(x) 参数:填入整型数据或数组.若填入正整数n,则将np.arange(n)乱序后返回:若填入数组,则将数组乱序后返回. 返回值:乱序数组. 函数功能描述:将数组乱序后输出.若填入的多维数组,则只对第一个维度进行乱序处理,其余维度不变.如填入二维数组,则只对行的顺序进行调整,每行内部元素…
1.numpy.random.rand(d0,d1,d2,...,dn) 参数:d0,d1,d2,...,dn 须是正整数,用来描述生成随机数组的维度.如(3,2)代表生成3行2列的随机数组. 返回值:维度为(d0,d11,d2,...,dn)的ndarray类数组,每个元素均为浮点型. 函数功能描述:生成一个给定形状的随机数组,随机数遵循均匀分布,分布范围为[0,1). 2.numpy.random.randn(d0,d1,d2,...,dn) 参数:d0,d1,d2,...,dn 须是正整数…
一,datetime 在python中datetime是一个库是一个模块也是一个函数,作用很多,这里面只对其做简单的最常用的讲解. 首先返回系统时间 import datetime nowTime=datetime.datetime.now() print nowTime 输出结果是: 2016-11-04 14:27:09.538000 返回当天日期 Today=datetime.date.today() print Today 输出的结果是:2016-11-04 时间间隔(这是一个time模…
numpy.random.uniform均匀分布 2018年06月19日 23:28:03 徐小妹 阅读数:4238   numpy.random.uniform介绍: 1. 函数原型:  numpy.random.uniform(low,high,size) 功能:从一个均匀分布[low,high)中随机采样,注意定义域是左闭右开,即包含low,不包含high. 参数介绍:         low: 采样下界,float类型,默认值为0:    high: 采样上界,float类型,默认值为1…
numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)之间. [code] import numpy as np arr1 = np.random.randn(2,4) print(arr1) print('*****************************…
使用 numpy.random.choice随机采样: 说明: numpy.random.choice(a, size=None, replace=True, p=None) 示例: >>> np.random.choice(5, 3) array([0, 3, 4]) >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) >>> np.random.choice(5,…
这玩意用了很多次,但每次用还是容易混淆,今天来总结mark一下~~~ 1. numpy.random.rand(d0,d1,...,dn) 生成一个[0,1)之间的随机数或N维数组 np.random.rand(2) #生成两个[0,1)之间的数 [0.6555729 0.76240372] np.random.rand(2,2) #生成2行*2列的矩阵 [[0.58360206 0.91619225] [0.78203671 0.06754087]] 2. numpy.random.randn…
本文转载自:https://blog.csdn.net/u010758410/article/details/71799142 numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中. 代码: import numpy as np arr1 = np.random…
numpy.random.rand numpy.random.rand(d0, d1, ..., dn) Random values in a given shape. Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1). Parameters: d0, d1, ..., dn : int, optional The dimen…
转自: https://blog.csdn.net/u010758410/article/details/71799142 numpy中有一些常用的用来产生随机数的函数,randn()和rand()就属于这其中. numpy.random.randn(d0, d1, …, dn)是从标准正态分布中返回一个或多个样本值. numpy.random.rand(d0, d1, …, dn)的随机样本位于[0, 1)中. 代码: import numpy as np arr1 = np.random.r…
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.random((, )) 上面这个就代表生成1000行 20列的浮点数,浮点数都是从0-1中随机. 2.numpy.random.rand()函数用法 numpy.random.rand(d0, d1, ..., dn): 生成一个[,)之间的随机浮点数或N维浮点数组. 3.numpy.random.…