[BZOJ4833]最小公倍佩尔数(min-max容斥) 题面 BZOJ 题解 首先考虑怎么求\(f(n)\),考虑递推这个东西 \((1+\sqrt 2)(e(n-1)+f(n-1)\sqrt 2)=e(n)+f(n)\sqrt 2\) 拆开之后可以得到:\(e(n)=e(n-1)+2f(n-1),f(n)=f(n-1)+e(n-1)\). 把每一层的\(e\)都给展开,得到:\(\displaystyle f(n)=1+f(n-1)+2\sum_{i=1}^{n-2}f(i)\) 然后差分搞…
4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 240  Solved: 118[Submit][Status][Discuss] Description 令(1+sqrt(2))^n=e(n)+f(n)*sqrt(2),其中e(n),f(n)都是整数,显然有(1-sqrt(2))^n=e(n)-f(n)*sqrt(2).令g( n)表示f(1),f(2)…f(n)的最小公倍数,给定两个正整数n和…
4833: [Lydsy1704月赛]最小公倍佩尔数 Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 202  Solved: 99[Submit][Status][Discuss] Description 令(1+sqrt(2))^n=e(n)+f(n)*sqrt(2),其中e(n),f(n)都是整数,显然有(1-sqrt(2))^n=e(n)-f(n)*sqrt(2).令g( n)表示f(1),f(2)…f(n)的最小公倍数,给定两个正整数n和p…
Problem 传送门 Sol 容易得到 \[f_n=e_{n-1}+f_{n-1},e_{n-1}=f_{n-1}+e_{n-1},f_1=e_1=1\] 那么 \[f_n=2\times \sum_{i=1}^{n-1}f_i-f_{n-1}+1\] 又有 \[f_{n+1}=2\times \sum_{i=1}^{n}f_i-f_{n}+1\] 相减得到 \(f_{n+1}=f_n\times 2 + f_{n-1},f_1=1\) 有结论 \(gcd(a,b)=1\) 时,形如 \(f_…
题面 令 \({(1+\sqrt 2)}^n=e(n)+f(n)*\sqrt2\) ,其中 \(e(n),f(n)\) 都是整数,显然有 \({(1-\sqrt 2)}^n=e(n)-f(n)*\sqrt 2\) . 令 \(g(n)\) 表示 \(f(1),f(2)-f(n)\) 的最小公倍数,给定两个正整数 \(n\) 和 \(p\) ,其中 \(p\) 是质数,并且保证 \(f(1),f(2)-f(n)\) 在模 \(p\) 意义下均不为 \(0\) . 请计算\(\displaystyl…
Description 令 $(1+\sqrt 2)^n=e(n)+\sqrt 2\cdot f(n)$ ,其中 $e(n),f(n)$ 都是整数,显然有 $(1-\sqrt 2)^n=e(n)-\sqrt 2\cdot f(n)$.令 $g(n)$ 表示 $f(1),f(2),\cdots ,f(n)$ 的最小公倍数,给定两个正整数 $n$ 和 $p$ ,其中 $p$ 是质数,并且保证 $f(1),f(2),\cdots ,f(n)$ 在模 $p$ 意义下均不为 $0$,请计算 $\sum _…
传送门 Description   Let \((1+\sqrt2)^n=e(n)+f(n)\cdot\sqrt2\) , both \(e(n)\) and \(f(n)\) are integers  Let \(g(n)\) be the gcd of \(f(1),f(2),...,f(n)\)  given \(n\), \(p\), where \(p\) is a prime number  Calculate the value of  \[  \sum_{i=1}^{n}i\c…
题意:全然平方数是指含有平方数因子的数.求第ki个非全然平方数. 解法:比較明显的二分,getsum(int middle)求1-middle有多少个非全然平方数,然后二分.求1-middle的非全然平方数个数能够用总数减掉全然平方数个数.计算全然平方数的个数用容斥: 首先加上n/(2*2)+n/(3*3)+n/(5*5)+n/(7*7)...+...然后减掉出现两次的,然后加上三次的...奇加偶减.这就是mou的原型,用mou数组计算非常easy: 代码: /*****************…
题目描述 KJDH是个十分善于探索的孩子,有一天他把分子分母小于等于n的最简分数列在了纸上,他想找到这些分数里第k小的数,这对于KJDH来说当然是非常轻易,但是KJDH最近多了很多妹子,他还要去找妹子聊天,所以这个任务就交给你了. 输入 输入文件只有一行,两个数n,k,保证输入合法. 输出 输出文件包含两个用空格隔开的数,x,y,表示第k小的分数x/y. 样例输入 5 6 100 200 样例输出 3 5 6 91 提示 n=5时,有这些分数1/2,1/3,2/3,1/4,3/4,1/5,2/5…
题目链接 第一问白给. 第二问: 设 \(b=y^{-1}\),且以下的 \(Ans\) 是除去 \(y^n\) 的. 设 \(C(T)\) 是固定了 \(T\) 中的边,再连 \(n-|T|-1\) 条边形成一棵树的方案数.设每个联通块的大小为 \(a_1,a_2,\ldots,a_{n-|T|}\),则答案为 \(n^{n-|T|-2}\prod a_i\). 证明可以使用 Matrix-Tree 定理. \[ \begin{aligned}Ans&=\sum_{T_2}b^{|T_1\ca…