scannet数据集】的更多相关文章

数据集包含xyz和label信息,不包含颜色信息. 一共1513个室内场景数据(每个场景中点云数量都不一样),共21个类别的对象(0-20,总共已知类别应该是20,类别0应该是未知类别,即未标注点云),其中,1201个场景用于训练,312个场景用于测试. 从每一个场景随机采集8192点是作为一个训练或者测试样本,跟pointnet中单位平方4096点为一样本不同. (注:github上回答s3dis数据集直接用于pointnet++的效果可能并不好的问题,说可能是s3dis采用的9通道信息,后六…
1.作者可能把scannet数据集分成了训练集和测试集并处理成了.pickle文件. 2.在代码运行过程中,作者从.pickle文件中读出训练集1201个场景的x.y.z坐标和测试集312个场景的x.y.z坐标. 3.考虑把点存到.txt文件中,用cloudcompare可视化一下. 2--地板 3--椅子 8--沙发 20--靠枕 单独存入训练数据到txt文件 : TRAIN_DATASET = scannet_dataset.ScannetDataset(root=DATA_PATH, np…
3D深度估计 Consistent Video Depth Estimation 论文地址:https://arxiv.org/pdf/2004.15021.pdf 项目网站:https://roxanneluo.github.io/Consistent-Video-Depth-Estimation/ 这项研究主要探究了如何生成准确度和几何一致性更高的视频重建结果,目前该论文已被计算机图形学顶级会议 SIGGRAPH 2020 接收,代码也将在未来开源. 摘要 提出了一种重建单眼视频中所有像素的…
CVPR2020:点云弱监督三维语义分割的多路径区域挖掘 Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Wei_Multi-Path_Region_Mining_for_Weakly_Supervised_3D_Semantic_Segmentat…
目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 改进的思路 2.4 进一步创新 2.5 本文贡献 三.PointConv 3.1 2D图像与3D点云的区别 3.2 3D连续卷积 -> 点云卷积 3.2.1 原始PointConv 3.2.2 高效的PointConv 3.2.3 PointDeConv 四.实验 4.1 在ModelNet40上的…
目录 摘要 1.引言: 2.点云深度学习的挑战 3.基于结构化网格的学习 3.1 基于体素 3.2 基于多视图 3.3 高维晶格 4.直接在点云上进行的深度学习 4.1 PointNet 4.2 局部结构计算方法 4.2.1 不探索局部相关性的方法 4.2.2 探索局部相关性的方法 4.3 基于图 5. 基准数据集 5.1 3D模型数据集 5.2 3D室内数据集 5.3 3D室外数据集 6. 深度学习在3D视觉任务中的应用 6.1 分类 6.2 分割 6.3 目标检测 7. 总结与结论 (Rem…
作者朱尊杰,公众号:计算机视觉life,编辑成员 一 主要针对自动驾驶: 1.KITTI数据集: http://www.cvlibs.net/datasets/kitti/index.php(RGB+Lidar+GPS+IMU) KITTI数据集由德国卡尔斯鲁厄理工学院和丰田美国技术研究院联合创办,是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集.该数据集用于评测立体图像 (stereo),光流 (optical flow),视觉里程计(visual odometry),3D物体检测…
SSD demo中详细介绍了如何在VOC数据集上使用SSD进行物体检测的训练和验证.本文介绍如何使用SSD实现对自己数据集的训练和验证过程,内容包括: 1 数据集的标注2 数据集的转换3 使用SSD如何训练4 使用SSD如何测试 1 数据集的标注 数据的标注使用BBox-Label-Tool工具,该工具使用python实现,使用简单方便.修改后的工具支持多label的标签标注.该工具生成的标签格式是:object_numberclassName x1min y1min x1max y1maxcl…
有时候在HTML元素上绑定一些额外信息,特别是JS选取操作这些元素时特别有帮助.通常我们会使用getAttribute()和setAttribute()来读和写非标题属性的值.但为此付出的代价是文档将不再是合法有效的HTML. 对此,HTML5提供了一个解决方案.在HTML5文档中,任意以"data-"为前缀的小写的属性名字都是合法的.这些“数据集属性”将不会对其元素的表现产生影响,它们定义了一种标准的.附加额外数据的方法,并不是在文档合法性上做出让步. HTML5还在Element对…
原文 接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C.回头看一眼引入了松弛变量以后的优化问题: 注意其中C的位置,也可以回想一下C所起的作用(表征你有多么重视离群点,C越大越重视,越不想丢掉它们).这个式子是以前做SVM的人写的,大家也就这么用,但没有任何规定说必须对所有的松弛变量都使用同一个惩罚因子,我们完全可以给每一个离群点都使用不同的C,这时就意味着你对每个样本的重视程度都不一样,有些样本丢了也就丢了,错了也就错了,这些就给一…
回到目录 Lind.DDD框架里提出了对数据集的控制,某些权限的用户为某些表添加某些数据集的权限,具体实现是在一张表中存储用户ID,表名,检索字段,检索值和检索操作符,然后用户登陆后,通过自己权限来构建对应表的查询语句,即动态构建表达式树,这种操作一些被写在业务层上,我们可以在业务层需要进行数据集权限控制的地方,添加这种策略,下面具体分析说明一下. 看一下数据集权限表结果 public class User_DataSet_Policies { /// <summary> /// 用户ID /…
回到目录 戏说当年 大叔原创的分布式数据集缓存在之前的企业级框架里介绍过,大家可以关注<我心中的核心组件(可插拔的AOP)~第二回 缓存拦截器>,而今天主要对Lind.DDD.Caching进行更全面的解决,设计思想和主要核心内容进行讲解.其实在很多缓存架构在业界有很多,向.net运行时里也有Cache,也可以实现简单的数据缓存的功能,向前几年页面的静态化比较流行,就出现了很多Http的“拦截器“,对当前HTTP响应的内容进行完整的页面缓存,缓存的文件大多数存储到磁盘里,访问的时间直接将磁盘上…
数据集转换为Json 第一步:新建一个类对象  通常我会写三个属性:状态.返回信息.数据集 第二步:新建一个JSON转换类 第三步:把类对象当做参数传入JSON转换类 —————————————————————————————————————————————————————————————————————————————— /// <summary>        /// 数据集转换为json        /// </summary>        /// <param n…
所有内容都在python源码和注释里,可运行! ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.com/83563/”中发现 # 原内容有少量笔误,并且对入门学友缺少一些信息.于是笔者做了增补,主要有: # 1.查询并简述了涉及的大部分算法: # 2.添加了连接或资源供进一步查询: # 3.增加了一些lib库的基本操作及说明: # 4.增加了必须必要的python的部分语法说明: # 5.增加了对…
最简单的办法 下载'20news-bydate.pkz', 放到C:\\Users\[Current user]\scikit_learn_data 下边就行. 实际上 scikit learning默认的路径是C:\\Users\[Current user]\scikit_learn_data 也可以添加环境变量'SCIKIT_LEARN_DATA', 程序会在环境变量设置的目录后加scikit_learn_data作为数据集存放的目录 不想用这两个目录的话,可以改site-package/s…
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fast-rcnn-train-another-dataset 这是我在github上修改的几个文件的链接,求星星啊,求星星啊(原谅我那么不要脸~~) 在之前两篇文章中我介绍了怎么编译Fast RCNN,和怎么修改Fast RCNN的读取数据接口,接下来我来说明一下怎么来训练网络和之后的检测过程 先给看一…
Fast RCNN训练自己的数据集 (2修改读写接口) 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fast-rcnn-train-another-dataset 这是我在github上修改的几个文件的链接,求星星啊,求星星啊(原谅我那么不要脸~~) 这里楼主讲解了如何修改Fast RCNN训练自己的数据集,首先请确保你已经安装好了Fast RCN…
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
如题......只是一个单元, 为了测试JSON单元性能的... 具体测试结果参考: http://www.cnblogs.com/hs-kill/p/3668052.html 代码中用到的SevenZIP单元在这里: http://www.cnblogs.com/hs-kill/p/3876160.html unit DSCJSON; // *************************************************************************** /…
由于上一篇博客所提到的论文中的训练数据是KITTI的数据集,因此如果我想要用自己的数据集进行训练的话,就需要先弄清楚KITTI数据集的格式,在以下的网址找到了说明: 首先,数据描述中是这样的: 在以下的网址中有具体每个维度所代表的意义的说明: https://github.com/NVIDIA/DIGITS/blob/v4.0.0-rc.3/digits/extensions/data/objectDetection/README.md 那么接下来就是将自己的训练数据集转成上述的格式,然后用自己…
对于数据集需要更新所有对象的FTaxRate 赋值为ftax_rate 以下采用遍历方式更新: foreach (var entry in _dataEntityList){ entry.FTaxRate = ftax_rate;} 以下采用linq方法更新: _dataEntityList.All(n => (n.FTaxRate = ftax_rate) == ftax_rate); 记录一下,备忘…
使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list…
本文对应<R语言实战>前3章,因为里面大部分内容已经比较熟悉,所以在这里只是起一个索引的作用. 第1章       R语言介绍 获取帮助函数 help(), ? 查看函数帮助 example() 使用函数示例 vignette() 列出vignette文档 vignette("svmdoc") 打开对应文档 管理工作空间 getwd() 显示当前工作目录 setwd("mydirectory") 修改当前工作目录为mydirectory rm(objec…
参照https://github.com/raulmur/ORB_SLAM2/blob/master/README.md 运行 4. Monocular Examples TUM Dataset 数据集. 将 ./Examples/Monocular/mono_tum Vocabulary/ORBvoc.txt Examples/Monocular/TUMX.yaml PATH_TO_SEQUENCE_FOLDER中最后一句 PATH_TO_SEQUENCE_FOLDER改成数据集文件夹的位置,…
偏好是无法度量的. 相比其他的机器学习算法,推荐引擎的输出更直观,更容易理解. 接下来三章主要讲述Spark中主要的机器学习算法.其中一章围绕推荐引擎展开,主要介绍音乐推荐.在随后的章节中我们先介绍Spark和MLib的实际应用,接着介绍一些机器学习的基本思想. 3.1 数据集 用户和艺术家的关系是通过其他行动隐含提现出来的,例如播放歌曲或专辑,而不是通过显式的评分或者点赞得到的.这被称为隐式反馈数据.现在的家用电视点播也是这样,用户一般不会主动评分. 数据集在http://www-etud.i…
参考文章: http://blog.csdn.net/u013059662/article/details/52770198 caffe的安装配置,以及fcn的使用在我前边的文章当中都已经提及到了,这边不会再细讲.在下边的内容当中,我们来看看如何使用别人提供的数据集来训练自己的模型!在这篇文章之后,我计划还要再写如何fine-tune和制作自己的数据集,以及用自己的数据集fine-tune. (一)数据准备(以SIFT-Flow 数据集为例) 下载数据集:  http://pan.baidu.c…
论文:<Fully Convolutional Networks for Semantic Segmentation> 代码:FCN的Caffe 实现 数据集:PascalVOC 一 数据集制作 PascalVOC数据下载下来后,制作用以图像分割的图像数据集和标签数据集,LMDB或者LEVELDB格式. 最好resize一下(填充的方式). 1. 数据文件夹构成 包括原始图片和标签图片,如下.   然后,构建对应的lmdb文件.可以将所有图片按照4:1的比例分为train:val的比例.每个t…
数据集的官网 http://realitycommons.media.mit.edu/index.html(可能需要FQ) ,下面是数据集的简要介绍(摘自官方网站) The goal of this experiment was to explore the capabilities of the smart phones that enabled social scientists to investigate human interactions beyond the traditional…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
最近在摸mxnet和tensorflow.两个我都搭起来了.tensorflow跑了不少代码,总的来说用得比较顺畅,文档很丰富,api熟悉熟悉写代码没什么问题. 今天把两个平台做了一下对比.同是跑mnist,tensorflow 要比mxnet 慢一二十倍.mxnet只需要半分钟,tensorflow跑了13分钟. 在mxnet中如何开跑? cd /mxnet/example/image-classification python train_mnist.py我用的是最新的mxnet版本.运行脚…