UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论"UFLDL 线性解码器",区别在于输出层去掉了\(sigmoid\),将计算值\(z\)直接作为输出.线性输出的原因是为了避免对输入范围的缩放: S 型激励函数输出范围是 [0,1],当$ f(z^{(3)}) $采用该激励函数时,就要对输入限制或缩放,使其位于 [0,1] 范围中.一些数据…
UFLDL深度学习笔记 (七)拓扑稀疏编码与矩阵化 主要思路 前面几篇所讲的都是围绕神经网络展开的,一个标志就是激活函数非线性:在前人的研究中,也存在线性激活函数的稀疏编码,该方法试图直接学习数据的特征集,利用与此特征集相应的基向量,将学习得到的特征集从特征空间转换到样本数据空间,这样可以用特征集重构样本数据. ​ 数据集.特征集.基向量分别表示为\(x.A.s\).构造如下目标代价函数,对估计误差的代价采用二阶范数,对稀疏性因子的惩罚代价采用一阶范数.原文中没有对误差项在数据集上做平均,真实情…
UFLDL深度学习笔记 (一)基本知识与稀疏自编码 前言 近来正在系统研究一下深度学习,作为新入门者,为了更好地理解.交流,准备把学习过程总结记录下来.最开始的规划是先学习理论推导:然后学习一两种开源框架:第三是进阶调优.加速技巧.越往后越要带着工作中的实际问题去做,而不能是空中楼阁式沉迷在理论资料的旧数据中.深度学习领域大牛吴恩达(Andrew Ng)老师的UFLDL教程 (Unsupervised Feature Learning and Deep Learning)提供了很好的基础理论推导…
UFLDL深度学习笔记 (六)卷积神经网络 1. 主要思路 "UFLDL 卷积神经网络"主要讲解了对大尺寸图像应用前面所讨论神经网络学习的方法,其中的变化有两条,第一,对大尺寸图像的每个小的patch矩阵应用相同的权值来计算隐藏层特征,称为卷积特征提取:第二,对计算出来的特征矩阵做"减法",把特征矩阵纵横等分为多个区域,取每个区域的平均值(或最大值)作为输出特征,称为池化.这样做的原因主要是为了降低数据规模,对于8X8的图像输入层有64个单元,而100X100的图像…
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细推导. 1. 详细推导softmax代价函数的梯度 经典的logistics回归是二分类问题,输入向量$ x^{(i)}\in\Re^{n+1}$ 输出0,1判断\(y^{(i)}\in{\{0,1\}}\),Softmax回归模型是一种多分类算法模型,如图所示,输出包含k个类型,\(y^{(i)}\in{\…
UFLDL深度学习笔记 (四)用于分类的深度网络 1. 主要思路 本文要讨论的"UFLDL 建立分类用深度网络"基本原理基于前2节的softmax回归和 无监督特征学习,区别在于使用更"深"的神经网络,也即网络中包含更多的隐藏层,我们知道前一篇"无监督特征学习"只有一层隐藏层.原文深度网络概览不仅给出了深度网络优势的一种解释,还总结了几点训练深度网络的困难之处,并解释了逐层贪婪训练方法的过程.关于深度网络优势的表述非常好,贴在这里. ​ 使用深度…
UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较简化,主题思路和步骤如下: 把有标签数据分为两份,先对一份原始数据做无监督的稀疏自编码训练,获得输入层到隐藏层的最优化权值参数\(W, b\): 把另一份数据分成分成训练集与测试集,都送入该参数对应的第一层网络(去掉输出层的稀疏自编码网络): 用训练集输出的特征作为输入,训练softmax分类器: 再用此参数…
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型…
自己主动编码线性解码器 自己主动编码线性解码器主要是考虑到稀疏自己主动编码器最后一层输出假设用sigmoid函数.因为稀疏自己主动编码器学习是的输出等于输入.simoid函数的值域在[0,1]之间,这就要求输入也必须在[0,1]之间.这是对输入特征的隐藏限制.为了解除这一限制,我们能够使最后一层用线性函数及a = z 习题答案: SparseAutoEncoderLinerCost.m function [cost,grad,features] = sparseAutoencoderLinear…
Qt Model/View 学习笔记 (五) View 类 概念 在model/view架构中,view从model中获得数据项然后显示给用户.数据显示的方式不必与model提供的表示方式相同,可以与底层存储数据项的数据结构完全不同. 内容与显式的分离是通过由QAbstractItemModel提供的标准模型接口,由QAsbstractItemview提供的标准视图接口共同实现的.普遍使用model index来表示数据项.view负责管理从model中读取的数据的外观布局. 它们自己可以去渲染…
今天我们来学习一个最简单的程序,即从文件读取图像并且创建窗口显示该图像. 目录 [imread]图像读取 [namedWindow]创建window窗口 [imshow]图像显示 [imwrite]图像写入文件 [waitKey]等待按键按下 前言 在说正文之前先简单介绍一下Mat类.Mat类是opencv2.0的主流图像类型,在之前opencv1.0使用的Iplimage*类型,Iplimage*是C语言接口类型,使用Iplimage*时需要考虑到关闭窗口时图形内存的释放问题.而使用Mat则在…
好久没有写博客了,今天抽空继续写MEF系列的文章.有园友提出这种系列的文章要做个目录,看起来方便,所以就抽空做了一个,放到每篇文章的最后. 前面四篇讲了MEF的基础知识,学完了前四篇,MEF中比较常用的基本已经讲完了,相信大家已经能看出MEF所带来的便利了.今天就介绍一些MEF中一些较为不常用的东西,也就是大家口中的所谓的比较高级的用法. 前面讲的导出都是在每个类上面添加Export注解,实现导出的,那么有没有一种比较简便的方法呢?答案是有的,就是在接口上面写注解,这样只要实现了这个接口的类都会…
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 最近tensorflow团队出了一个model项目,和这个课程无关,但是可以参考 框架: TensorFlow 谷歌出品的基于Pytho…
java之jvm学习笔记五(实践写自己的类装载器) 课程源码:http://download.csdn.net/detail/yfqnihao/4866501 前面第三和第四节我们一直在强调一句话,类装载器和安全管理器是可以被动态扩展的,或者说,他们是可以由用户自己定制的,今天我们就是动手试试,怎么做这部分的实践,当然,在阅读本篇之前,至少要阅读过笔记三. 下面我们先来动态扩展一个类装载器,当然这只是一个比较小的demo,旨在让大家有个比较形象的概念. 第一步,首先定义自己的类装载器,从Clas…
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Programming Second Edition学习笔记(五) indigo computer vision FireWire IEEE1394 cameras无USB cameras--sudo apt-get install ros-indigo-usb-cam--roslaunch chapt…
中文网:https://www.tslang.cn/ 官网:http://www.typescriptlang.org/ 目录: Typescript 学习笔记一:介绍.安装.编译 Typescript 学习笔记二:数据类型 Typescript 学习笔记三:函数 Typescript 学习笔记四:回忆Es5 中的类 Typescript 学习笔记五:类 Typescript 学习笔记六:接口 Typescript 学习笔记七:泛型 类的定义 ES5 中定义: function Person (…
import export 这两个家伙对应的就是es6自己的 module功能. 我们之前写的Javascript一直都没有模块化的体系,无法将一个庞大的js工程拆分成一个个功能相对独立但相互依赖的小工程,再用一种简单的方法把这些小工程连接在一起. 这有可能导致两个问题: 一方面js代码变得很臃肿,难以维护 另一方面我们常常得很注意每个script标签在html中的位置,因为它们通常有依赖关系,顺序错了可能就会出bug 在es6之前为解决上面提到的问题,我们得利用第三方提供的一些方案,主要有两种…
目录 muduo网络库学习笔记(五) 链接器Connector与监听器Acceptor Connector 系统函数connect 处理非阻塞connect的步骤: Connetor时序图 Acceptor 系统函数accept Socket的封装 Acceptor的封装 Acceptor时序图. 简单测试程序 Acceptor Connctor 运行日志 muduo网络库学习笔记(五) 链接器Connector与监听器Acceptor 标签: muduo Connector Acceptor…
python3.4学习笔记(五) IDLE显示行号问题,插件安装和其他开发工具介绍 IDLE默认不能显示行号,使用ALT+G 跳到对应行号,在右下角有显示光标所在行.列.pycharm免费社区版.Sublime Text.pyscripter.eclipse+pydev 可以显示行数. 安装插件可以让IDLE显示行号:1.先下载LineNumbers.py文件:http://ftp.heanet.ie/disk1/disk1/disk1/sourceforge/s/so/sourcetrac/t…
Go语言学习笔记五: 条件语句 if语句 if 布尔表达式 { /* 在布尔表达式为 true 时执行 */ } 竟然没有括号,和python很像.但是有大括号,与python又不一样. 例子: package main import "fmt" func main() { var a int = 1 if a < 2 { fmt.Printf("a < 2\n" ) } fmt.Printf("a = %d\n", a) } if.…
1.用户与组账号 用户账号:包括实际人员和逻辑性对象(例如应用程序执行特定工作的账号) 每一个用户账号包含一个唯一的用户 ID 和组 ID 标准用户是系统安装过程中自动创建的用户账号,其中除 root 是管理者外,其余的都是系统账号 组账号:组是逻辑性单元,用来集合特定的用户,以便于其中的所有成员对文件具有相同的访问权限 标准组是系统自动添加的,其中除 root 组用来组织管理者外,其余的供程序执行时使用 2.账号信息 (1)用户账号信息 有关用户账号的信息都记录在 /etc/passwd 文件…
目录 go微服务框架kratos学习笔记五(kratos 配置中心 paladin config sdk [断剑重铸之日,骑士归来之时]) 静态配置 flag注入 在线热加载配置 远程配置中心 go微服务框架kratos学习笔记五(kratos 配置中心 paladin config sdk [断剑重铸之日,骑士归来之时]) 本节看看kratos的配置中心paladin(骑士). kratos对配置文件进行了梳理,配置管理模块化,如redis有redis的单独配置文件.bm有bm的单独配置文件,…
C++基础 学习笔记五:重载之运算符重载 什么是运算符重载 用同一个运算符完成不同的功能即同一个运算符可以有不同的功能的方法叫做运算符重载.运算符重载是静态多态性的体现. 运算符重载的规则 重载公式 返回值类型 operator 运算符名称 (形参表列){} 能够重载的运算符 + - * / % ^ & | ~ ! = < > += -= *= /= %= ^= &= |= << >> <<= >>= == != <= &g…
openresty 学习笔记五:访问RabbitMQ消息队列 之前通过比较选择,决定采用RabbitMQ这种消息队列来做中间件,目的舒缓是为了让整个架构的瓶颈环节.这里是做具体实施,用lua访问RabbitMQ消息队列. RabbitMQ消息队列有几个比较重要的概念:生产者Producer,消费者Consumer,交换器Exchanges,队列Queues 我的简单理解生产者,发布消息入队的用户.消费者,订阅队列获取消息的用户.交换器,消息可以不指定某个具体队列,而是发送给交换器,通过不同类型交…
2020年Yann Lecun深度学习笔记(下)…
2020年Yann Lecun深度学习笔记(上)…
作者:Grey 原文地址: Java IO学习笔记五:BIO到NIO 准备环境 准备一个CentOS7的Linux实例: 实例的IP: 192.168.205.138 我们这次实验的目的就是直观感受一下Socket编程中BIO模型和NIO模型的性能差异 BIO 准备服务端代码: import java.io.*; import java.net.InetSocketAddress; import java.net.ServerSocket; import java.net.Socket; /**…
不多说,直接上干货! 十.总结与展望 1)Deep learning总结 深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法.换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征.高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器,小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达.…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上非常大牛和机器学习专家所无私奉献的资料的.详细引用的资料请看參考文献.详细的版本号声明也參考原文献. 2)本文仅供学术交流,非商用.所以每一部分详细的參考资料并没有详细相应.假设某部分不小心侵犯了大家的利益,还望海涵,并联系博主删…
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针对不同大小的目标检测,传统的做法是先将图像转换成不同大小(图像金字塔),然后分别检测,最后将结果综合起来(NMS).而SSD算法则利用不同卷积层的 feature map 进行综合也能达到同样的效果.文章的核心之一是同时采用lower和upper的feature map做检测.          …