首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
机器学习公开课~~~~mooc
】的更多相关文章
机器学习公开课~~~~mooc
https://class.coursera.org/ntumlone-001/class/index…
LR 算法总结--斯坦福大学机器学习公开课学习笔记
在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数.(此部分转自 XGBoost 与 Boosted Tree) 一.模型和参数 模型指给定输入xi如何去预测 输出 yi.我们比较常见的模型如线性模型(包括线性回归和logistic regression)采用 二.目标函数:损失 + 正则 模型和参数本身指定了给定输入我们如何做预测,但是没有告诉我们如何去寻找一个比较好的参数,这个时候就需要目标函数登场了.一般的目标函数包含下面两项 常见的误差函数有…
Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/variance tradeoff 还是用这组图,学习算法追求的是generalization error(对未知数据的预测误差),而不是training error(只是对训练集) 最左边,underfit,我们说这种学习算法有较大的bias Informally, we define the bia…
Andrew Ng机器学习公开课笔记 -- 支持向量机
网易公开课,第6,7,8课 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量机算法概述, 这篇讲的挺好,可以参考 先继续前面对线性分类器的讨论, 通过机器学习算法找到的线性分类的线,不是唯一的,对于一个训练集一般都会有很多线可以把两类分开,这里的问题是我们需要找到best的那条线 首先需要定义Margin, 直观上来讲,best的那条线,应该是在可以正确分类的前提下,离所有的样本点越远越好,why? 因为越靠近分类…
Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)
网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Components Analysis (PCA), 比Factor Analysis更为直接,计算也简单些 参考,A Tutorial on Principal Component Analysis, Jonathon Shlens 主成分分析基于, 在现实中,对于高维的数据,其中有很多维都是扰动噪音,…
Andrew Ng 机器学习公开课 - 线性回归
我的机器学习系列从现在开始将会结合Andrew Ng老师与sklearn的api是实际应用相结合来写了. 吴恩达(1976-,英文名:Andrew Ng),华裔美国人,是斯坦福大学计算机科学系和电子工程系副教授,人工智能实验室主任.吴恩达是人工智能和机器学习领域国际上最权威的学者之一.吴恩达也是在线教育平台Coursera的联合创始人(with Daphne Koller). 2014年5月16日,吴恩达加入百度,担任百度公司首席科学家,负责百度研究院的领导工作,尤其是Baidu Brain计划…
Andrew Ng机器学习公开课笔记 -- Regularization and Model Selection
网易公开课,第10,11课 notes,http://cs229.stanford.edu/notes/cs229-notes5.pdf Model Selection 首先需要解决的问题是,模型选择问题,如何来平衡bais和variance来自动选择模型?比如对于多项式分类,如何决定阶数k,对于locally weighted regression如何决定窗口大小,对于SVM如何决定参数C For instance, we might be using a polynomial regre…
机器学习公开课笔记(5):神经网络(Neural Network)——学习
这一章可能是Andrew Ng讲得最不清楚的一章,为什么这么说呢?这一章主要讲后向传播(Backpropagration, BP)算法,Ng花了一大半的时间在讲如何计算误差项$\delta$,如何计算$\Delta$的矩阵,以及如何用Matlab去实现后向传播,然而最关键的问题——为什么要这么计算?前面计算的这些量到底代表着什么,Ng基本没有讲解,也没有给出数学的推导的例子.所以这次内容我不打算照着公开课的内容去写,在查阅了许多资料后,我想先从一个简单的神经网络的梯度推导入手,理解后向传播算法的…
机器学习公开课笔记(8):k-means聚类和PCA降维
K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis) 管理计算机集群(Organize Computer Clusters) 天文学数据分析(Astronomical Data Analysis) K-Means算法属于非监督式学习的一种,算法的输入是:训练数据集$\{x^{(1)},x^{(2)},\ldots, x^{(m)}\}$(其中$x^…
机器学习公开课笔记(4):神经网络(Neural Network)——表示
动机(Motivation) 对于非线性分类问题,如果用多元线性回归进行分类,需要构造许多高次项,导致特征特多学习参数过多,从而复杂度太高. 神经网络(Neural Network) 一个简单的神经网络如下图所示,每一个圆圈表示一个神经元,每个神经元接收上一层神经元的输出作为其输入,同时其输出信号到下一层,其中每一层的第一个神经元称为bias unit,它是额外加入的其值为1,通常用+1表示,下图用虚线画出. 符号说明: $a_i^{(j)}$表示第j层网络的第i个神经元,例如下图$a_1^{(…