2D image convolution】的更多相关文章

在学习cnn的过程中,对convolution的概念真的很是模糊,本来在学习图像处理的过程中,已对convolution有所了解,它与correlation是有不同的,因为convolution = correlation + filp over in both horizontal + vertical 但在CNN中,明明只是进行了correlation,但却称之为convolution,实在不解 下面, 将图像处理中的convolution重新整理记录 因为网络关于这部分的解释很多,这里直接…
Understanding Convolution in Deep Learning Convolution is probably the most important concept in deep learning right now. It was convolution and convolutional nets that catapulted deep learning to the forefront of almost any machine learning task the…
转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值,因此需要增加输入宽度和高度.转置卷积,也称为分步卷积或反卷积,就是为了达到这一目的. from mxnet import np, npx, init from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() 1. Ba…
使用二维数据构造简单卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 图像和一些时序数据集都可以用二维数据的形式表现,我们此次使用随机分布的二位数据构造一个简单的CNN-网络卷积-最大池化-全连接 参考代码 # Implementing Different Layers # --------------------------------------- # # We will illustrate how to use different types # of layers…
# file: neural_net_dense_batch.py #=============================================================================== # Copyright 2014-2018 Intel Corporation. # # This software and the related documents are Intel copyrighted materials, and # your use of…
tensorflow 旋转矩阵的函数实现方法 关键字: rot90, tensorflow 1. 背景 在做数据增强的操作过程中, 很多情况需要对图像旋转和平移等操作, 针对一些特殊的卷积(garbo conv)操作,还需要对卷积核进行旋转操作. 在tensorflow中似乎没有实现对4D tensor的旋转操作. 严格的说: tensorflow对tensor的翻转操作并未实现, 仅有针对3D tensor的tf.image.rot() 而在大多数的情况下使用的是4D形式的tensor, [B…
https://www.gdcvault.com/play/1024410/Achieving-High-Quality-Low-Cost 这篇是教美术怎么用做地形那种方法 复用贴图 做skin的 做个编辑器出来体现 pores那部分的细节 skin 包含 pores pbr ---反射,GI sss postprocess sss很重要 linearspace 做光照 http://www.iryoku.com/ iryoku对此有详细论述 2013年那篇很复杂了 细节多到令人发指 超乎想象…
Winograd Convolution 推导 - 从1D到2D 姚伟峰 http://www.cnblogs.com/Matrix_Yao/ Winograd Convolution 推导 - 从1D到2D 1D Winograd 卷积 2D Winograd卷积 实操粉 理论粉 参考文献 1D Winograd 卷积 1D Winograd算法已经有很多文章讨论了,讨论得都比较清楚,这里就不再赘述,仅列出结论. 输入:四维信号 卷积核: 三维向量 输出: 二维信号 则可表示为: 其中: 2D…
前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 实验内容:Exercise:Convolution and Pooling.从2000张64*64的RGB图片(它是the STL10 Dataset的一个子集)中提取特征作为训练数据集,训练softmax分类器,然后从3200张64*64的RGB图片(它是th…
图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的.两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接相连).但是大图像,这个将会变得很耗时:比如96*96的图像,若采用全连接方式,需要96*96个输入单元,然后如果要训练100个特征,只这一层就需要96*96*100个参数(W,b),训练时间将是前面的几百或者上万倍.所以这里用到了部分联通网络.对于图像来说,每个隐含单元仅仅连接输入图像的一小片相邻…