组织数据形式: aa 11 bb 11 cc 34 aa 22 bb 67 cc 29 aa 36 bb 33 cc 30 aa 42 bb 44 cc 49 需求: 1.对上述数据按key值进行分组 2.对分组后的值进行排序 3.截取分组后值得top 3位以key-value形式返回结果 答案如下: val groupTopNRdd = sc.textFile("hdfs://db02:8020/user/hadoop/groupsorttop/groupsorttop.data")…
辅助排序和二次排序案例(GroupingComparator) 1.需求 有如下订单数据 订单id 商品id 成交金额 0000001 Pdt_01 222.8 0000001 Pdt_05 25.8 0000002 Pdt_03 522.8 0000002 Pdt_04 122.4 0000002 Pdt_05 722.4 0000003 Pdt_01 222.8 0000003 Pdt_02 33.8 现在需要求出每一个订单中最贵的商品. 2.数据准备 GroupingComparator.…
最近在项目中遇到二次排序的需求,和平常开发spark的application一样,开始查看API,编码,调试,验证结果.由于之前对spark的API使用过,知道API中的sortByKey()可以自定义排序规则,通过实现自定义的排序规则来实现二次排序. 这里为了说明问题,举了一个简单的例子,key是由两部分组成的,我们这里按key的第一部分的降序排,key的第二部分升序排,具体如下: JavaSparkContext javaSparkContext = new JavaSparkContext…
package com.spark.sort; import java.io.Serializable; import scala.math.Ordered; public class SecondSortKey implements Serializable, Ordered<SecondSortKey> { /** * serialVersionUID */ private static final long serialVersionUID = -2749925310062789494L…
我们有这样一个文件          首先我们的思路是把输入文件数据转化成键值对的形式进行比较不就好了嘛! 但是你要明白这一点,我们平时所使用的键值对是不具有比较意义的,也就说他们没法拿来直接比较. 我们可以通过sortByKey,sortBy(pair._2)来进行单列的排序,但是没法进行两列的同时排序. 那么我们该如何做呢? 我们可以自定义一个键值对的比较类来实现比较, 类似于JAVA中自定义类实现可比较性实现comparable接口. 我们需要继承Ordered和Serializable特…
一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 ===> b,-3 c,2 b,-2 b,-2 b,1 a,100 b,6 b,-3 c,-7 c,-7 c,2 2. 分析[MapRedice过程] 1> 分析数据传入通过input()传入map() 2> map()对数据进行层层过滤,以达到我们想要的数据源, 3> 过滤方法中可添加自…
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGroupingComparator 在0.20.0以后使用是 job.setPartitionerClass(Partitioner p); job.setSortComparatorClass(RawComparator c); job.setGroupingComparatorClass(RawCom…
一:序列化概念 序列化(Serialization)是指把结构化对象转化为字节流.反序列化(Deserialization)是序列化的逆过程.即把字节流转回结构化对象.Java序列化(java.io.Serializable) 二:Hadoop序列化的特点 (1):序列化格式特点: 紧凑:高效使用存储空间. 快速:读写数据的额外开销小. 可扩展:可透明地读取老格式的数据. 互操作:支持多语言的交互. (2):Hadoop的序列化格式:Writable接口 三:Hadoop序列化的作用: (1):…
指对Reduce阶段的数据根据某一个或几个字段进行分组. 案例 需求 有如下订单数据 现在需要找出每一个订单中最贵的商品,如图 需求分析 利用"订单id和成交金额"作为key,可以将Map阶段读取到的所有订单数据先按照订单id(升降序都可以),再按照acount(降序)排序,发送到Reduce. 在Reduce端利用groupingComparator将订单id相同的kv聚合成组,然后取第一个成交金额即是最大值(若有多个成交金额并排第一,则都输出). Mapper阶段主要做三件事: k…
原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partition - reduce   (3)增加了在本地先进性一次reduce(优化)过程: map - combin(本地reduce) - partition -reduce2.Mapreduce中Par…