『线段树 Segment Tree』】的更多相关文章

更新了基础部分 更新了\(lazytag\)标记的讲解 线段树 Segment Tree 今天来讲一下经典的线段树. 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 简单的说,线段树是一种基于分治思想的数据结构,用来维护序列的区间特殊值,相对于树状数组,线段树可以做到更加通用,解决更多的区间问题. 性质 1.线段树的每一个节点都代表了一个区间 2.线段树是一棵二叉树,具有唯一的根节点,其中,根节点代表的是整个区间\([1,n]\) 3…
原文链接:线段树(Segment Tree) 1.概述 线段树,也叫区间树,是一个完全二叉树,它在各个节点保存一条线段(即“子数组”),因而常用于解决数列维护问题,基本能保证每个操作的复杂度为O(lgN). 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b].因此线段树是平衡二叉树,最后的子节点数目为N,即…
题目链接 区间取\(\max,\ \min\)并维护区间和是普通线段树无法处理的. 对于操作二,维护区间最小值\(mn\).最小值个数\(t\).严格次小值\(se\). 当\(mn\geq x\)时,不需要改变,return:\(se>x>mn\)时,\(sum=sum+(x-mn)*t\),打上区间\(\max\)标记: 当\(x\geq se>mn\)时,不会做,继续递归分别处理两个子区间,直到遇到前两种情况. 操作三同理,维护最大值.最大值个数.次大值. 复杂度\(O(m\log…
一.线段树的定义 线段树,又名区间树,是一种二叉搜索树. 那么问题来了,啥是二叉搜索树呢? 对于一棵二叉树,若满足: ①它的左子树不空,则左子树上所有结点的值均小于它的根结点的值 ②若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值 ③它的左.右子树也分别为二叉搜索树 那么这就是一棵二叉搜索树. 扯完废话,再回到线段树这里.顾名思义,线段树就是由线段构成的树,它大概长成这样: 对于每一棵线段树上的节点,都有三个值:左区间.右区间以及权值.(当然,在某些情况下它只有左右区间,这个时候线段…
线段树在一些acm题目中经常见到,这种数据结构主要应用在计算几何和地理信息系统中.下图就为一个线段树: (PS:可能你见过线段树的不同表示方式,但是都大同小异,根据自己的需要来建就行.) 1.线段树基本性质和操作 线段树是一棵二叉树,记为T(a, b),参数a,b表示区间[a,b],其中b-a称为区间的长度,记为L. 线段树T(a,b)也可递归定义为: 若L>1 : [a, (a+b) div 2]为 T的左儿子: [(a+b) div 2,b]为T 的右儿子. 若L=1 : T为叶子节点. 线…
众所周知,线段树是algo中很重要的一项! 一.简介 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN).而未优化的空间复杂度为2N,实际应用时一般还要开4N的数组以免越界,因此有时需要离散化让空间压缩. 二.用途 单点 : 查询(query)修改(add,mul) 区间 : 查询(区间和),修改,最大值(max),最小值(min). 三. 实现方式…
入门看这边『线段树 Segment Tree』. 扫描线 扫描线是一种解决一类平面内统计问题的算法,通常会借助线段树来实现,我们通过一道例题来引入这个算法. Atlantis Description There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the i…
一.线段树 线段树既是线段也是树,并且是一棵二叉树,每个结点是一条线段,每条线段的左右儿子线段分别是该线段的左半和右半区间,递归定义之后就是一棵线段树. 例题:给定N条线段,{[2, 5], [4, 6], [0, 7]}, M个点{2, 4, 7},判断每个点分别在几条线段出现过? 1.构建线段树 2.处理线段 三条线段分割之后 3.查询 对于每一个值我们就可以开始遍历这一颗线段树,加上对于结点的count字段便是在线段中出现的次数 比如对于4,首先遍历[0, 7],次数 = 0+1=1:4在…
新增一道例题 左偏树 Leftist Tree 这是一个由堆(优先队列)推广而来的神奇数据结构,我们先来了解一下它. 简单的来说,左偏树可以实现一般堆的所有功能,如查询最值,删除堆顶元素,加入新元素等,时间复杂度也均相等,与其不同的是,左偏树还可以在\(O(log_2n)\)的时间之内实现两个堆的合并操作,这是一般的堆无法做到的. 特点 当然,左偏树是一个树形数据结构,我们需要像线段树一样使用一个结构体来记录每一个节点上的若干信息,以便于进行查询,合并等操作,具体如下: 1.\(val\)值,代…
Codeforces Round #254 (Div. 2)E题这题说的是给了一个一段连续的区间每个区间有一种颜色然后一个彩笔从L画到R每个区间的颜色都发生了 改变然后 在L和R这部分区间里所用的颜色变成了x 然后每个区间的 色度加上abs(x-Yi) Yi 为原位置的颜色,还有一个操作就是求 L 到 R 的距离之内的所有的点和,数据 有 n<=100000 m<100000 次操作 对于每次第二种操作输出, 自然我们将一个区间的颜色如果相同自然将他们 用延迟标记 但是 会有一个问题就是在一个…