---恢复内容开始--- 原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accuracy Step 4: Perform Exploratory Analysis with Statistics 使用描述性与图表分析数据,重点在于数据可视化,突出数据类别与不同feature的关联性 简单的groupby()获得不同feature对于生存率的影响 箱型图…
自从入了数据挖掘的坑,就在不停的看视频刷书,但是总觉得实在太过抽象,在结束了coursera上Andrew Ng 教授的机器学习课程还有刷完一整本集体智慧编程后更加迷茫了,所以需要一个实践项目来扎实之前所学的知识.于是就参考kaggle上的starter项目Titanic,并选取了kernel中的一篇较为祥尽的指南,从头到尾实现了一遍.因为kaggle入门赛相关方面的参考和指导非常少,因此写博给需要学习的同学做个小参考,也记录下数据挖掘的学习历程.新手上路,如果博文有误或缺失,还希望各位大神指正…
原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accuracy Step 5: Model Data 数据科学是交叉学科,我们仅仅称他为计算机科学的一部分是有失公正的,它包含了数学,cs,商业管理,统计学等等方向. 机器学习被分为监督学习,无监督学习和强化学习,强化学习是前两者的混合. 算法被归为四类:分类.回归.聚类.降维,此kernel专注于分类与…
原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accuracy 问题处理之前要知道的事: 数据科学框架(A Data Science Framework) 1.定义问题(Define the Problem): 问题→需求→方法→设计→技术,这是刚开始拿到问题的解决流程,所以在我们用一些fancy的技巧和算法解决问题之前,必须要明确我们需要解决的问题到…
集成开发环境:Pycharm python版本:2.7(anaconda库) 用到的库:科学计算库numpy,数据分析包pandas,画图包matplotlib,机器学习库sklearn 大体步骤分为三步: 1.数据分析 2.交叉验证 3.预测并输出结果 导入库函数 import numpy as np import pandas as pa import matplotlib.pyplot as pl from sklearn.linear_model import LogisticRegre…
0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性.可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类. 在三个类别中,其中有一个类别和其他两个类别是线性可分的.另外.在sklearn中已内置了此数据集…
现如今数据可视化可谓是非常之火,随着硬件价格的一降再降,仿佛做数据可视化项目,你没有数据大屏,你就没有逼格.理想很丰满,现实很骨感,并不是每一个数据可视化项目都能够成功.数据可视化项目的进行,无外乎是选择软件公司进行定制,要么就是自己选择工具制作. 选择软件公司定制,好处是可以做成自己想要的,一些个性化的想法都可以在软件公司处实现,可以做到独一无二的存在.但是弊端是十分明显的,就是开发周期长,但凡是项目就会有风险,而且由于是定制化,软件公司99%会硬编码写死功能,这让后期扩展成为了难题.而且由于…
现如今数据可视化可谓是非常之火,随着硬件价格的一降再降,仿佛做数据可视化项目,你没有数据大屏,你就没有逼格.理想很丰满,现实很骨感,并不是每一个数据可视化项目都能够成功.数据可视化项目的进行,无外乎是选择软件公司进行定制,要么就是自己选择工具制作. 选择软件公司定制,好处是可以做成自己想要的,一些个性化的想法都可以在软件公司处实现,可以做到独一无二的存在.但是弊端是十分明显的,就是开发周期长,但凡是项目就会有风险,而且由于是定制化,软件公司99%会硬编码写死功能,这让后期扩展成为了难题.而且由于…
全文的步骤可以大概分为几步: 一:数据获取,利用selenium+多进程(linux上selenium 多进程可能会有问题)+kafka写数据(linux首选必选耦合)windows直接采用的是写mysql 二:数据存储(kafka+hive 或者mysql)+数据清洗shell +python3 三: 数据可视化,词云  pyecharts jieba分词 snownlp (情绪化分析) step 1  selenium 模拟登陆豆瓣,爬去武林外传的短评: 在最开始写爬虫的时候,抓取豆瓣评论,…
Reference: http://blog.csdn.net/witnessai1/article/details/52612012 Kaggle是一个数据分析的竞赛平台,网址:https://www.kaggle.com/ 企业或者研究者可以将数据.问题描述.期望的指标发布到Kaggle上,以竞赛的形式向广大的数据科学家征集解决方 案,类似于KDD-CUP(国际知识发现和数据挖掘竞赛).Kaggle上的参赛者将数据下载下来,分析数据,然后运用机 器学习.数据挖掘等知识,建立算法模型,解决问题…