什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树是{cf, fa, ab} 3条边 Kruskal算法 用到上一篇中介绍的不相交集合(并查集) 首先,定义V是端点的集合,E是边的集合,A为要求的最小生成树集合 初始A为空集合,每个端点都作为单独的不相交集合 将所有边根据其权重进行排序 对每条边(v1, v2),如果其两个端点数据不同的不相交集,则…
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法,如有需要可到原文查看. Kruskal算法 1.概览 Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表.用来解决同样问题的还有Prim算法和Boruvka算法等.三种算法都是贪婪算法的应用.和Boruvka算法不同的地方是,Kruskal算法在图中存…
原文:算法起步之Kruskal算法 说完并查集我们接着再来看这个算法,趁热打铁嘛.什么是最小生成树呢,很形象的一个形容就是铺自来水管道,一个村庄有很多的农舍,其实这个村庄我们可以看成一个图,而农舍就是图上的每个节点,节点之间有很多的路径,而铺自来水管道目的就是为了让每家都能用上自来水,而至于自来水怎么铺就不关心了,而铺管子的人就会想如何才能最生材料,那么最省材料的一条路径就是我们这个图的最小生成树.而如何去构建一个最小生成树呢?这个就用到了我们之前说的贪心策略.这里的觉得点就是一直寻找安全边,所…
wide&deep在个性化排序算法中是影响力比较大的工作了.wide部分是手动特征交叉(负责memorization),deep部分利用mlp来实现高阶特征交叉(负责generalization),wide部分和deep部分joint train. Deep&Cross Network模型我们下面将简称DCN模型,对比Wide & Deep ,不需要特征工程来获得高阶的交叉特征.对比 FM 系列的模型,DCN 拥有更高的计算效率并且能够提取到更高阶的交叉特征. 一个DCN模型从嵌入…
FM通过对于每一位特征的隐变量内积来提取特征组合,最后的结果也不错,虽然理论上FM可以对高阶特征组合进行建模,但实际上因为计算复杂度原因,一般都只用到了二阶特征组合.对于高阶特征组合来说,我们很自然想到多层神经网络DNN. DeepFM目的是同时学习低阶和高阶的特征交叉,主要由FM和DNN两部分组成,底部共享同样的输入.模型可以表示为: \[ \hat{y} = sigmoid(y_{FM}+y_{DNN}) \]…
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么跳过,否则合并他们分别所在的树. #include<iostream>#include<algorithm>using namespace std; struct eg{ int s,t,c;};int v,e;int ans=0;eg E[1000];int p[1000];bool…
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1条边即可. #include<stdio.h> #include<iostream> #include<algorithm> #include<string.h> using namespace std; ; int v,l;///v代表点的个数,l代表边的个数…
Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) {6 将(v,w)加到T中:7 else{舍弃(v,w):}8 }://if9 }//for 为了有效地执行第5和第6步,G中的结点的组合方式应该是易于确定结点v和w是否已由早先选择的边所连通的那种.在已连通的情况下,则将边(v,w)舍弃:若不连通,则把(v,w) 加人到T.一种可能的组合方法是把T的…
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺序选取每条边,假如一条边的两个端点不在同一个集合中,就将这两个端点合并到同一个集合中:假如两个端点在同一个集合中,说明这两个端点已经连通了,就将当前这条边舍弃掉:当所有顶点都在同一个集合时,说明最小生成树已经形成.(写代码的时候会将所有边遍历一遍) 来看一个例子: 步骤: (1)先根据权值把边排序:…
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的时候,经常把最小生成树问题和最锻炼吧问题弄混淆,最后事实证明这两个问题是存在着相似点的. 所以还是可以参照我上一篇的博客 https://www.cnblogs.com/laysfq/p/9808088.html(此处插个"广告") 最小生成树的实质问题还是求最短的路径(是吧?肯定是的!)…