AI 反向传播神经网络】的更多相关文章

反向传播(Back Propagation,简称BP)神经网络…
课程笔记 Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning 作业说明 Exercise 4,Week 5,实现反向传播 backpropagation神经网络算法, 对图片中手写数字 0-9 进行识别. 数据集 :ex4data1.mat.手写数字图片数据,5000个样例.每张图片20px * 20px,也就是一共400个特征.数据集X维度为5000 * 400 ex4weights.mat.神经网络每一层的权重. 文件…
2017-08-14 这节课的主要内容是反向传播的介绍,非常的详细,还有神经网络的部分介绍,比较简短. 首先是对求导,梯度的求解.反向传播的核心就是将函数进行分解,分段求导,前向计算损失,反向计算各个单元的梯度,即代表 各个单元对于最后结果的影响力.因为神经网络一般过于庞大,所以采取分段求导会比较实际,所以引入了 computational graph. 课程下来,对于整个求解梯度的过程有了更好的理解.总结: 然后就是介绍了神将网络的一点知识.…
# -*- coding: utf-8 -*- """ Created on Sat Jan 20 13:47:54 2018 @author: markli """ import numpy as np; import random; def tanh(x): return np.tanh(x); def tanh_derivative(x): return 1.0 - np.tanh(x)*np.tanh(x); def logistic(x…
BP算法细节 参数说明:假设有n层.J表示代价函数,和上面的E是同样的意思,只不过用不同的字母写而已. 分析:要想知道第l层的第i个结点的残差,必须知道层已经计算出来了残差,你只要把后面一层的每个结点j的残差乘以该结点与这一层的结点i相连的权值,然后加和,最后别忘了乘以这一层的激活方式的导数. 最后说明一点,BP传播,计算各层的各点的残差是关键,残差是总的代价函数对于该点的net的偏导,从倒数第二层开始,求残差就要用到其后面的一层的各个残差,只要用后面一层的各个结点残差乘以其与这一层这个的结点所…
实验部分: ①输入.输出矢量及问题的阐述 由题意输入变量取值范围为e={-2,-1,0,1,2}和ec={-2,-1,0,1,2},则输入矢量有25种情况,分别如下所示: 则由T=int((e+ec)/2) ,采用向下取整,可得输出矢量T为: 该问题可描述为通过训练BP神经网络实现模糊控制规则T=int((e+ec)/2),并达到网络输出与期望值误差小于0.001.选取较好的BP神经网络参数,包括隐含层节点个数.学习速率等.同时对不同的学习训练算法进行比较,并通过内插方法测试网络. ②给出网络结…
反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预测结果a,看看这个预测结果和事先标记好的训练集中的真实结果y之间的差距,然后调整策略,再试一次,这一次就不是“蒙”了,而是有依据地向正确的方向靠近.如此反复多次,一直到预测结果和真实结果之间相差无几,亦即|a-y|->0,就结束训练. 在神经网络训练中,我们把“蒙”叫做初始化,可以随机,也可以根据以…
前置知识   求导 知识地图   神经网络算法是通过前向传播求代价,反向传播求梯度.在上一篇中介绍了神经网络的组织结构,逻辑关系和代价函数.本篇将介绍如何求代价函数的偏导数(梯度). 梯度检测   在进入主题之前,先了解一种判断代价函数的求导结果是否正确的方法,这种方法称为梯度检测.现在假设我们已经掌握了反向传播,可以计算出代价函数的偏导数.   当函数只有一个变量时,已知导数是切线的斜率,如果能求出某个点的斜率,也就求出了该点的导数.当ε足够小时(如10的-4次方),θ处的斜率可以近似表示为如…
基础:逻辑回归 Logistic 回归模型的参数估计为什么不能采用最小二乘法? logistic回归模型的参数估计问题不能“方便地”定义“误差”或者“残差”. 对单个样本: 第i层的权重W[i]维度的行等于i层神经元的个数,列等于i-1层神经元的个数:第i层常数项b[i]b[i]维度的行等于i层神经元的个数,列始终为1. 对m个样本,用for循环不如用矩阵快,输入矩阵X的维度为(nx,m),nx是输入层特征数目. 其中,Z[1]的维度是(4,m),4是隐藏层神经元的个数:A[1]的维度与Z[1]…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/234 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…