Spark中的常用算子】的更多相关文章

更多有用的例子和算子讲解参见: http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html map是对每个元素操作, mapPartitions是对其中的每个partition操作 ------------------------------------------------------------------------------------------- ----------------------------…
一.前述 Spark中默认有两大类算子,Transformation(转换算子),懒执行.action算子,立即执行,有一个action算子 ,就有一个job. 通俗些来说由RDD变成RDD就是Transformation算子,由RDD转换成其他的格式就是Action算子. 二.常用Transformation算子 假设数据集为此: 1.filter      过滤符合条件的记录数,true保留,false过滤掉. Java版: package com.spark.spark.transform…
1. reduceByKey reduceByKey的作用对像是(key, value)形式的rdd,而reduce有减少.压缩之意,reduceByKey的作用就是对相同key的数据进行处理,最终每个key只保留一条记录,保留一条记录通常,有两种结果:一种是只保留我们希望的信息,比如每个key出现的次数:第二种是把value聚合在一起形成列表,这样后续可以对value做进一步的操作,比如排序. 2. 使用说明 比如现在我们有数据goods Sale:RDD[(String, String)],…
RDD(弹性分布式数据集,里面并不存储真正要计算的数据,你对RDD的操作,他会在Driver端转换成Task,下发到Executor计算分散在多台集群上的数据) RDD是一个代理,你对代理进行操作,他会生成Task,帮你计算你操作这个代理,就像操作本地集合一样,不用关心任务调度,容错等 val r1 = sc.textFile("hdfs://hdp-02:9000/wc") r1.count //这样就统计出有多少行 创建RDD的方式生成一个RDD sc.textFile("…
<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> <深入理解Spark:核心思想与源码分析>一书第二章的内容请看链接<第2章 SPARK设计理念与基本架构> <深入理解Spark:核心思想与源码分析>一书第三章第一部分的内容请看链接<深入理解Spark:核心…
Spark小课堂Week7 从Spark中一个例子看面向对象设计 今天我们讨论了个问题,来设计一个Spark中的常用功能. 功能描述:数据源是一切处理的源头,这次要实现下加载数据源的方法load() 初始需求 需求:支持Json数据源加载 具体:输入一个path,需要返回一个Relation, Relation中提供scan()和write()两个方法 示意代码: class Context{ public Relation json(String path){ return new Relat…
Scala中sortBy是以方法的形式存在的,并且是作用在Array或List集合排序上,并且这个sortBy默认只能升序,除非实现隐式转换或调用reverse方法才能实现降序,Spark中sortBy是算子,作用出发RDD中数据进行排序,默认是升序可以通过该算子的第二参数来实现降序排序的方式…
一.前述 Spark中控制算子也是懒执行的,需要Action算子触发才能执行,主要是为了对数据进行缓存. 控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化,持久化的单位是partition.cache和persist都是懒执行的.必须有一个action类算子触发执行.checkpoint算子不仅能将RDD持久化到磁盘,还能切断RDD之间的依赖关系. 二.具体算子 1. cache 默认将RDD的数据持久化到内存中.cache是懒执行. chche (…
算子分为value-transform, key-value-transform, action三种.f是输入给算子的函数,比如lambda x: x**2 常用算子: keys: 取pair rdd的key部分 values: 取pair rdd的value部分 map: f作用于每个元素 flatMap: f作用于每个元素.输出list,然后对list压平 mapValues: f作用于pair rdd的value部分 flatMapValues: f作用于pair rdd的value部分,…
一.Transformation spark常用的Transformation算子如下表: Transformation算子 Meaning(含义) map(func) 对原RDD中每个元素运用 func 函数,并生成新的RDD filter(func) 对原RDD中每个元素使用func 函数进行过滤,并生成新的RDD flatMap(func) 与 map 类似,但是每一个输入的 item 被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq ). mapPartiti…
一.Transformation spark 常用的 Transformation 算子如下表: Transformation 算子 Meaning(含义) map(func) 对原 RDD 中每个元素运用 func 函数,并生成新的 RDD filter(func) 对原 RDD 中每个元素使用func 函数进行过滤,并生成新的 RDD flatMap(func) 与 map 类似,但是每一个输入的 item 被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq ).…
在我看来,Spark编程中的action算子的作用就像一个触发器,用来触发之前的transformation算子.transformation操作具有懒加载的特性,你定义完操作之后并不会立即加载,只有当某个action的算子执行之后,前面所有的transformation算子才会全部执行.常用的action算子如下代码所列:(java版) package cn.spark.study.core; import java.util.Arrays; import java.util.List; im…
Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]   将函数应用于RDD的每一元素,并返回一个新的RDD package top.ruandb import org.apache.spark.{SparkConf, SparkContext} object RddTest extends App{ val sparkConf = new SparkConf…
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间看HaDoopRDD这个方法的源码,用来计算分区数量的) 物理切片:实际将数据切分开,即以前的将数据分块(每个数据块的存储地址不一样),hdfs中每个分块的大小为128m 逻辑切片:指的是读取数据的时候,将一个数据逻辑上分成多块(这个数据在地址上并没有分开),即以偏移量的形式划分(各个Task从某个…
Spark中产生shuffle的算子 作用 算子名 能否替换,由谁替换 去重 distinct() 不能 聚合 reduceByKey() groupByKey groupBy() groupByKey() reduceByKey aggregateByKey() combineByKey() 排序 sortByKey() sortBy() 重分区 coalesce() repartition() 集合或者表操作 Intersection() Substract() SubstractByKey…
Spark中常用的算法: 3.2.1 分类算法 分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类.分类在数据挖掘中是一项重要的任务,目前在商业上应用最多,常见的典型应用场景有流失预测.精确营销.客户获取.个性偏好等.MLlib 目前支持分类算法有:逻辑回归.支持向量机.朴素贝叶斯和决策树. 案例:导入训练数据集,然后在训练集上执行训练算法,最后在所得模型上进行预测并计算训练误差. import org.apache.sp…
package com.XXX import org.apache.spark.storage.StorageLevel import org.apache.spark.{SparkConf, SparkContext} //spark中的RDD测试 object RddTest { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local[*]").setAppName(&q…
一.前述 Spark中因为算子中的真正逻辑是发送到Executor中去运行的,所以当Executor中需要引用外部变量时,需要使用广播变量. 累机器相当于统筹大变量,常用于计数,统计. 二.具体原理 1.广播变量 广播变量理解图 注意事项 1.能不能将一个RDD使用广播变量广播出去? 不能,因为RDD是不存储数据的.可以将RDD的结果广播出去. 2. 广播变量只能在Driver端定义,不能在Executor端定义. 3. 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量…
SparkRDD简介/常用算子/依赖/缓存 RDD简介 RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD是一个类 RDD的属性 1.一个列表,存储存取每个Partition的优先位置(preferred location).对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置.按照"移动数据不如移动计算"的理念,Spark在进行任…
Spark支持两种RDD操作:transformation和action.transformation操作会针对已有的RDD创建一个新的RDD: 而action则主要是对RDD进行最后的操作,比如遍历.reduce.保存到文件等,并可以返回结果给Driver程序. 例如,map就是一种transformation操作,它用于将已有RDD的每个元素传入一个自定义的函数,并获取一个新的元素,然后将所有的新元素组成一个新的RDD. 而reduce就是一种action操作,它用于对RDD中的所有元素进行…
参考:http://www.raincent.com/content-85-11052-1.html 1.Application:Spark应用程序 指的是用户编写的Spark应用程序,包含了Driver功能代码和分布在集群中多个节点上运行的Executor代码. Spark应用程序,由一个或多个作业JOB组成,如下图所示: 2.Driver:驱动程序 Driver负责运行Application的Main()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备S…
RDD(弹性分布式数据集)及常用算子 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据 处理模型.代码中是一个抽象类,它代表一个弹性的.不可变.可分区.里面的元素可并行 计算的集合. 弹性 存储的弹性:内存与磁盘的自动切换: 容错的弹性:数据丢失可以自动恢复: 计算的弹性:计算出错重试机制: 分片的弹性:可根据需要重新分片. 分布式:数据存储在大数据集群不同节点上 数据集:RDD 封装了计算逻辑,并不保存数据 数据抽象:RD…
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver program. Executor:为某Application运行在worker node上的一个进程.该进程负责运行Task,并负责将数据存在内存或者磁盘 上.每个Application都有自己独…
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing 和 An Architecture for Fast and General Data Processing on Large Clusters 这两篇论文. 这篇…
版权声明:本文为原创文章,未经允许不得转载. Spark程序程序job的运行是通过actions算子触发的,每一个action算子其实是一个runJob方法的运行,详见文章 SparkContex源码解读(一)http://www.cnblogs.com/yourarebest/p/5326678.html 1.Spark中Job的提交 以一个简单的runjob为例,源码如下: def runJobT, U: Unit = { val start = System.nanoTime //通过da…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
1.PairRDD介绍     Spark为包含键值对类型的RDD提供了一些专有的操作.这些RDD被称为PairRDD.PairRDD提供了并行操作各个键或跨节点重新进行数据分组的操作接口.例如,PairRDD提供了reduceByKey()方法,可以分别规约每个键对应的数据,还有join()方法,可以把两个RDD中键相同的元素组合在一起,合并为一个RDD. 2.创建Pair RDD     程序示例:对一个英语单词组成的文本行,提取其中的第一个单词作为key,将整个句子作为value,建立 P…
首先是一张Spark的部署图: 节点类型有: 1. master 节点: 常驻master进程,负责管理全部worker节点.2. worker 节点: 常驻worker进程,负责管理executor 并与master节点通信.dirvier:官方解释为: The process running the main() function of the application and creating the SparkContext.即理解为用户自己编写的应用程序 一.Application ap…
在spark中,map与mapPartitions两个函数都是比较常用,这里使用代码来解释一下两者区别 import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable.ArrayBuffer object MapAndPartitions { def main(args: Array[String]): Unit = { val sc = new SparkContext(new SparkCon…
hdfs中的block是分布式存储的最小单元,类似于盛放文件的盒子,一个文件可能要占多个盒子,但一个盒子里的内容只可能来自同一份文件.假设block设置为128M,你的文件是250M,那么这份文件占3个block(128+128+2).这样的设计虽然会有一部分磁盘空间的浪费,但是整齐的block大小,便于快速找到.读取对应的内容.(p.s. 考虑到hdfs冗余设计,默认三份拷贝,实际上3*3=9个block的物理空间.) spark中的partition 是弹性分布式数据集RDD的最小单元,RD…