数学:拓展Lucas定理】的更多相关文章

拓展Lucas定理解决大组合数取模并且模数为任意数的情况 大概的思路是把模数用唯一分解定理拆开之后然后去做 然后要解决的一个子问题是求模质数的k次方 将分母部分转化成逆元再去做就好了 这里贴一份别人的板子 #include<bits/stdc++.h> using namespace std; + ; typedef long long LL; LL Pow(LL n, LL m, LL mod) { LL ans = ; ) { ) ans = (LL)ans * n % mod; n =…
(上不了p站我要死了,侵权度娘背锅) Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人 ,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某 个人在这两种方案中收到的礼物不同).由于方案数可能会很大,你只需要输出模P后的结果. Input 输入的第一行包含一个正整数…
今天考试的题目中有大组合数取模,不会唉,丢了45分,我真是个弱鸡,现在还不会lucas. 所以今天看了一下,定理差不多是: (1)Lucas定理:p为素数,则有: 即:lucas(n,m,p)=c(n%p,m%p)*lucas(n/p,m/p,p)  然后留下我的理解: 用递归的方式去证明这个式子: 先考虑阶乘,在%p的意义下,x!=(p!^(x/p))*(x/p)!*(x%p)!这里把有p因子的数不模p,用于组合数的'抵消'. 在看到组合数 : C(x,y)=x!/((x-y)!*y!) =(…
利用Lucas定理解决大组合数取模 Lucas定理是用来求 C(n,m) mod p,p为素数的值.(注意:p一定是素数) Lucas定理用来解决大组合数求模是很有用的 Lucas定理最大的数据处理能力是p在10^5左右 表达式:C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p 递归方程:(C(n%p, m%p)*Lucas(n/p, m/p))%p.(递归出口为m==0,return 1) 然后来一道裸题 BZOJ2982 #include<cstdio> using nam…
2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1313  Solved: 541[Submit][Status][Discuss] Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方…
lucas定理及其拓展的推导 我的前一篇博客-- lucas定理 https://mp.csdn.net/mdeditor/100550317#主要是给出了lucas的结论和模板,不涉及推导. 本篇文章主要侧重lucas定理及其拓展的公式推导.先从pwp^wpw的一般情况进行推导,最后令w=1w=1w=1进一步推导出了lucas定理的结论.可能会比较枯燥. 想直接阅读结论的请转向这篇博客--拓展lucas结论及模板 https://blog.csdn.net/yuyilahanbao/artic…
Lucas定理 在『组合数学基础』中,我们已经提出了\(Lucas\)定理,并给出了\(Lucas\)定理的证明,本文仅将简单回顾,并给出代码. \(Lucas\)定理:当\(p\)为质数时,\(C_n^m\equiv C_{n\ mod\ p}^{m\ mod\ p}*C_{n/p}^{m/p}(mod\ p)\). 在计算模域组合数时,如果模数较小,那么就可以尝试使用\(Lucas\)定理来递归求解,其时间复杂度为\(O(plog_p\min(n,m))\). \(Code:\) inlin…
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) .我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理.对于模p而言,我们有下面的式子成立: 上式左右两边的x的某项x^m(m<=n)的系数对模p同余.其…
题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Description 在很久很久以前,有个臭美国王.一天,他得到了一件新衣,于是决定巡城看看老百姓的反应(囧).于是他命令可怜的宰相数一下他有多少种巡城方案. 城市是一个N*M的矩形,(N+1)*(M+1)条街把城市分成了N*M块.国王从左下角出发,每次只能向右或向上走,右上角是终点. 请你帮帮可怜的宰相.   In…
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) .我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理.对于模p而言,我们有下面的式子成立: 上式左右两边的x的某项x^m(m<=n)的系数对模p同余.其…
0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 $c\mid a$,$c\mid b$,则 $c\mid (b-a)$. 设 $c\nmid a$,则 $c$ 不是 $a,b-a$ 的公因子. 设 $c\mid a$,$c\nmid b$,则 $c$ 不是 $a,b-a$ 的公因子. int gcd(int a,int b){ if(!b) r…
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) .我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理.对于模p而言,我们有下面的式子成立: 上式左右两边的x的某项x^m(m<=n)的系数对模p同余.其…
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. 该文于 2018.3.31 完成最后一次修改(若有出错的地方,之后也会进行维护).其主要内容限于数论和组合计数类数学相关问题.因为版面原因,其余数学方面的总结会以全新的博文呈现. 感谢你的造访. 0.1 记号说明 由于该文完成的间隔跨度太大,不同时期的内容的写法不严谨,甚至 $LaTeX$ 也有许多…
Lucas定理是用来求 c(n,m) mod p,p为素数的值. 表达式: C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p 当我们遇到求一个N,M很大的组合数的时候,递推法就显得很耗时了,对于1e9那么大的数据求N!%P,无论是空间还是时间都不会允许. 于是引申出lucas定理,利用这个表达式可以将数量级降低好几个,从而减小时间和空间的开销. 一般来说可以用lucas定理解决的问题都是N,M很大,但质数P相对来说在1e5左右,不会太大,我们利用迭代渐渐缩小N,M的值, 将C(N…
(上不了p站我要死了,当然是游戏原画啊) Description (题面倒是很有趣,就是太长了) 题意: 一个朝代流传的猪文文字恰好为N的k分之一,其中k是N的一个正约数(可以是1和N).不过具体是哪k分之一,以及k是多少,由于历史过于久远,已经无从考证了.考虑到所有可能的k.显然当k等于某个定值时,该朝的猪文文字个数为N / k.然而从N个文字中保留下N / k个的情况也是相当多的.如果所有可能的k的所有情况数加起来为P的话,那么他研究古代文字的代价将会是G的P次方. 现在他想知道研究古代文字…
喵喵的神∙数 Time Limit: 1 Sec Memory Limit: 128 MB Description 喵喵对组合数比較感兴趣,而且对计算组合数很在行. 同一时候为了追求有后宫的素养的生活,喵喵每天都要研究 质数. 我们先来复习一下什么叫做组合数.对于正整数P.T                                                           然后我们再来复习一下什么叫质数.质数就是素数,假设说正整数N的约数仅仅有1和它本身,N就是质数:另外. 1…
http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://www.cnblogs.com/jianglangcaijin/p/3446839.html   膜拜 #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include…
这篇博客是从另一位园友那里存的,但是当时忘了写原文的地址,如果有找到原文地址的请评论联系! Lucas定理解决的问题是组合数取模.数学上来说,就是求 \(\binom n m\mod p\).(p为素数) 这里\(n,m\)可能很大,比如达到\(10^{15}\),而\(p\)在\(10^9\)以内.显然运用常规的阶乘方法无法直接求解,所以引入Lucas定理. Lucas定理 把\(n\)和\(m\)写成\(p\)进制数的样子(如果长度不一样把短的补成长的那个的长度): \(n=(a0a1-ak…
组合数奇偶性的判断 对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数. 最直观的方法就是计算一下,然后看它的奇偶性:但是这个时间以及数据范围上都不允许: 另外一种方法就是,对于给定C(n,m),检查n中2因子的个数与m和(n-m)中2因子个数和的关系,假设n!中2因子个数为a,m!中2因子个数为b,(n-m)!中2因子个数为c,则显然有a>=(b+c):并且当a==b+c时,一定为奇,否则为偶.题意转化为求a和b+c.求一个阶乘中含有的素因子i的个数的方法可以参见Knu…
1.1 问题引入 已知\(p\)是一质数,求\(\dbinom{n}{m}\pmod{p}\). 关于组合数,它和排列数都是组合数学中的重要概念.这里会张贴有关这两个数的部分内容. 由于Lucas定理比较简单粗暴,这里直接给出表达式: \[\boxed{\dbinom{n}{m}\equiv\dbinom{n\mod p}{m\mod p}\dbinom{\frac{n}{p}}{\frac{m}{p}}\pmod{p}}\]. 或者: \[\boxed{\dbinom{n}{m}\equiv…
lucas及其拓展 模板题 洛谷 P4720 本文侧向结论和代码实现, 推导请转至lucas定理及其拓展的推导 https://blog.csdn.net/yuyilahanbao/article/details/100568285 lucas定理 请阅读lucas定理 https://blog.csdn.net/yuyilahanbao/article/details/100550317 拓展lucas的结论 (nm)≡pk1−k2−k3×b1×b2−1×b3−1×cu1−u2−u3×k1!k…
引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要,有不同的计算方法. (1)在模k的意义下求出C(i,j)(1≤j≤i≤n)共n2 (数量级)个组合数: 运用一个数学上的组合恒等式(OI中称之为杨辉三角):C(m,n)=C(m-1,n-1)+C(m-1,n). 证明: 1.直接将组合数化为定义式暴力通分再合并.过程略. 2.运用组合数的含义:设m…
卢卡斯定理是一个与组合数有关的数论定理,在算法竞赛中用于求组合数对某质数的模. 第一部分是博主的个人理解,第二部分为 Pecco 学长的介绍 第一部分 一般情况下,我们计算大组合数取模问题是用递推公式进行计算的: \[C_n^m=(C_{n-1}^m+C_{n-1}^{m-1}) mod\ p \] 其中p相对较小的素数.但是当n和m过大时,计算的耗费就急剧增加\(O(mn)\),在实践中不适用.当这时候就需要Lucas定理进行快速运算: \[C_n^m=\prod_{i=0}^{k}C_{n_…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output Devu wants to decorate his garden with flowers. He has purchased n boxes…
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 . 要解决这个问题首先需要Lucas定理 或者 C!解法. Lucas定理: 我们令n=sp+q , m=tp+r . q , r ≤ p 那么,然后你只要继续对调用Lucas定理即可. 代码可以递归的去完成这个过程,其中递归终点为t = 0 : 伪代码,时间O(logp(n)*p): int L…
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 95  Solved: 33[Submit][Status][Discuss] Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升.它有三个参数n,k.它会 向编号为0到k的位置发射威力为C(n,…
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模. (2) ,   ,并且是素数 本文针对该取值范围较大又不太大的情况(2)进行讨论. 这个问题可以使用Lucas定理,定理描述: 其中 这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p. 已知C(n, m) mod p = n!/(m!(…
Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4315    Accepted Submission(s): 1687 Problem Description Although winter is far away, squirrels have to work day and night to save be…
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪…