题目下载[传送门] 题目简述:识别图片中的数字,训练该模型,求参数θ. 第1步:读取数据文件: %% Setup the parameters you will use for this exercise input_layer_size = 400; % 20x20 Input Images of Digits hidden_layer_size = 25; % 25 hidden units num_labels = 10; % 10 labels, from 1 to 10 % (note…
题目下载[传送门] 题目简述:识别图片中的数字,训练该模型,求参数θ. 出现了一个问题:虽然训练的模型能够有很好的预测准确率,但是使用minimize函数时候始终无法成功,无论设计的迭代次数有多大,如下图: import numpy as np import scipy.io as scio import matplotlib.pyplot as plt import scipy.optimize as op # X:5000*400 # Y:5000*10 # a1:5000*401(后500…
题目下载[传送门] 第1题 简述:实现K-means聚类,并应用到图像压缩上. 第1步:实现kMeansInitCentroids函数,初始化聚类中心: function centroids = kMeansInitCentroids(X, K) % You should return this values correctly centroids = zeros(K, size(X, 2)); randidx = randperm(size(X, 1)); centroids = X(rand…
题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 第1步:加载数据文件: data = load('ex2data1.txt'); X = data(:, [1, 2]); y = data(:, 3); plotData(X, y); % Put some labels hold on; % Labels and Legend xlabel('Exam 1 score') ylabel('Exam 2 score') % Specified in plot order legend…
大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业四 Q13-20的MATLAB实现. 曾经的代码都是通过C++实现的.可是发现C++实现这些代码太麻烦.这次作业还要频繁更改參数值,所以选择用MATLAB实现了.与C++相比.MATLAB实现显然轻松非常多.在数据导入方面也更加方便.我的代码尽管可以得到正确答案,可是当中可能有某些思想或者细节是错误的,假设各位博友发现,请及时留言纠正,谢谢.再次声…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 4.正则化与过拟合问题 Regularization/The Problem of Overfitting 1 过拟合问题 The problem of overfitting 首先,Andrew Ng还是对之前几节中提到过的房屋面积-房价问题进…
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
[pytorch学习笔记]-搭建神经网络进行关系拟合 学习自莫烦python 目标 1.创建一些围绕y=x^2+噪声这个函数的散点 2.用神经网络模型来建立一个可以代表他们关系的线条 建立数据集 import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt x=torch.unsqueeze(torch.linspace(-1,1,1…
摘要:这篇文章将讲解TensorFlow如何保存变量和神经网络参数,通过Saver保存神经网络,再通过Restore调用训练好的神经网络. 本文分享自华为云社区<[Python人工智能] 十一.Tensorflow如何保存神经网络参数 丨[百变AI秀]>,作者: eastmount. 一.保存变量 通过tf.Variable()定义权重和偏置变量,然后调用tf.train.Saver()存储变量,将数据保存至本地"my_net/save_net.ckpt"文件中. # -*…
Net# 是由 Microsoft 开发的一种用于定义神经网络体系结构的语言. 使用 Net# 定义神经网络的结构使定义复杂结构(如深层神经网络或任意维度的卷积)变得可能,这些复杂结构被认为可提高对数据的学习,如映像.音频或视频. 在下列上下文中,可以使用 Net# 体系结构规范: Microsoft Azure 机器学习工作室中的所有网络模块:多类神经网络.两类神经网络和神经网络回归 MicrosoftML 中的神经网络函数:R 语言的 NeuralNet 和 rxNeuralNet,以及 P…