目录 NLP中的预训练 语境表示 语境表示相关研究 存在的问题 BERT的解决方案 任务一:Masked LM 任务二:预测下一句 BERT 输入表示 模型结构--Transformer编码器 Transformer vs. LSTM 模型细节 在不同任务上进行微调 GLUE SQuAD 1.1 SQuAD 2.0 SWAG 分析 预训练的影响 方向与训练时间的影响 模型规模的影响 遮罩策略的影响 多语言BERT(机器翻译) 生成训练数据(机器阅读理解) 常见问题 结论 翻译自Jacob Dev…
attention 以google神经机器翻译(NMT)为例 无attention: encoder-decoder在无attention机制时,由encoder将输入序列转化为最后一层输出state向量,再由state向量来循环输出序列每个字符. attention机制: 将整个序列的信息压缩在一维向量里造成信息丢失,并且考虑到输出的某个字符只与输入序列的某个或某几个相关,与其他输入字符不相关或相关性较弱,由此提出了attention机制.在encoder层将输入序列的每个字符output向量…
1. 什么是Transformer <Attention Is All You Need>是一篇Google提出的将Attention思想发挥到极致的论文.这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的 CNN 和 RNN.目前大热的Bert就是基于Transformer构建的,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向. 2. Transformer结构 2.1 总体结构 Transformer的结构和Att…
文章原创自:微信公众号「机器学习炼丹术」 作者:炼丹兄 联系方式:微信cyx645016617 代码来自github [前言]:看代码的时候,也许会不理解VIT中各种组件的含义,但是这个文章的目的是了解其实现.在之后看论文的时候,可以做到心中有数,而不是一片茫然. VIT类 初始化 和之前的学习一样,从大模型类开始看起,然后一点一点看小模型类: class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_clas…
上一章我们聊了聊quick-thought通过干掉decoder加快训练, CNN-LSTM用CNN作为Encoder并行计算来提速等方法,这一章看看抛开CNN和RNN,transformer是如何只基于attention对不定长的序列信息进行提取的.虽然Attention is All you need论文本身是针对NMT翻译任务的,但transformer作为后续USE/Bert的重要组件,放在embedding里也没啥问题.以下基于WMT英翻中的任务实现了transfromer,完整的模型…
2013年----word Embedding 2017年----Transformer 2018年----ELMo.Transformer-decoder.GPT-1.BERT 2019年----Transformer-XL.XLNet.GPT-2 2020年----GPT-3 Transformer 谷歌提出的Transformer模型,用全Attention的结构代替的LSTM,在翻译上取得了更好的成绩.这里基于Attention Is All You Need,对 Transformer…
​ 前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍. 本文来自公众号CV技术指南的技术总结系列 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. 在讲如何搭建之前,先回顾一下Transformer在计算机视觉中的结构是怎样的.这里以最典型的ViT为例. ​ 如图所示,对于一张图像,先将其分割成NxN个…
动机 基于 Transformers 架构的大型语言模型 (LLM),如 GPT.T5 和 BERT,已经在各种自然语言处理 (NLP) 任务中取得了最先进的结果.此外,还开始涉足其他领域,例如计算机视觉 (CV) (VIT.Stable Diffusion.LayoutLM) 和音频 (Whisper.XLS-R).传统的范式是对通用网络规模数据进行大规模预训练,然后对下游任务进行微调.与使用开箱即用的预训练 LLM (例如,零样本推理) 相比,在下游数据集上微调这些预训练 LLM 会带来巨大…
中间插播了几篇scalaz数据类型,现在又要回到Monad专题.因为FP的特征就是Monad式编程(Monadic programming),所以必须充分理解认识Monad.熟练掌握Monad运用.曾经看到一段对Monad的描述:“Monadic for-comprehension就是一种嵌入式编程语言,由它的Monad提供它的语法”.但如果每一种Monad的for-comprehension都独立提供一套语法的话,这种编程语言就显得十分单调.功能简单了.那么既然是FP,我们应该可以通过函数组合…
不同的行业组织和企业有不同的业务流程和规定,在OCR文字识别领域,ORC文字识别软件ABBYY给各个行业都提供了有效解决方案,满足其特定需求的同时还帮助他们提高业务流程处理效率,降低成本,全球大量的纸质文档处理组织都在广泛使用ABBYY软件,以提高系统自动化程度,降低劳动强度,简化业务流程,其中就包括政府机构.金融保险行业.医疗行业等. ABBYY政府行业解决方案 ABBYY FineReader和ABBYY PDF Transformer+两款产品都能够帮助政府机构(包括国家或者州级别)实现最…