Iterators 对torchtext的batch实现的修改算法原理 Batching matters a ton for speed. We want to have very evenly divided batches, with absolutely minimal padding. To do this we have to hack a bit around the default torchtext batching. This code patches their defaul…
​  前言  本文解读的论文是ICCV2021中的最佳论文,在短短几个月内,google scholar上有388引用次数,github上有6.1k star. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 代码:https://github. com/micro…
1. RuntimeError: "exp" not implemented for 'torch.LongTensor' class PositionalEncoding(nn.Module) div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model)) 将 “0” 改为 “0.” 否则会报错:RuntimeError: "exp" not implement…
一.简介 论文链接:<Attention is all you need> 由google团队在2017年发表于NIPS,Transformer 是一种新的.基于 attention 机制来实现的特征提取器,可用于代替 CNN 和 RNN 来提取序列的特征. 在该论文中 Transformer 用于 encoder - decoder 架构.事实上 Transformer 可以单独应用于 encoder 或者单独应用于 decoder . Transformer = 编码器 + 解码器 输入自…
目录 从宏观上看Transformer 把张量画出来 开始编码! 从宏观上看自注意力 自注意力的细节 自注意力的矩阵计算 "多头"自注意力 用位置编码表示序列的顺序 残差 解码器 最后的线性和Softmax层 损失函数 下一步 本文翻译自Jay Alammar的博文The Illustrated Transformer 注意力是一个有助于提高神经机器翻译模型性能的机制.在这篇文章中,我们将着眼于Transformer--一个利用注意力来提高模型训练速度的模型.Transformer在特…
放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较 在辞旧迎新的时刻,大家都在忙着回顾过去一年的成绩(或者在灶台前含泪数锅),并对2019做着规划,当然也有不少朋友执行力和工作效率比较高,直接把2018年初制定的计划拷贝一下,就能在3秒钟内完成2019年计划的制定,在此表示祝贺.2018年从经济角度讲,对于所有人可能都是比较难过的一年,而对于自然语言处理领域来说,2018年无疑是个收获颇丰的年头,而诸多技术进展如果只能选择一项来讲的话,那么当之无愧的…
一,概述 在自然语言生成的任务中,大部分是基于seq2seq模型实现的(除此之外,还有语言模型,GAN等也能做文本生成),例如生成式对话,机器翻译,文本摘要等等,seq2seq模型是由encoder,decoder两部分组成的,其标准结构如下: 原则上encoder,decoder可以由CNN,RNN,Transformer三种结构中的任意一种组合.但实际的应用过程中,encoder,decnoder的结构选择基本是一样的(即encoder选择CNN,decoder也选择CNN,如faceboo…
Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attention mechanism,抛弃了传统的RNN和CNN. 我们根据论文的结构图,一步一步使用 PyTorch 实现这个Transformer模型. Transformer架构首先看一下transformer的结构图: 解释一下这个结构图.首先,Transformer模型也是使用经典的encoer-decoder架构,由encode…
在学习深度学习过程中很多讲的不够细致,这个讲的真的是透彻了,转载过来的,希望更多人看到(转自-张贤同学-公众号). 前言 本文翻译自 http://jalammar.github.io/illustrated-transformer ,是笔者看过的把 Transformer 讲解得最好的文章.这篇文章从输入开始,一步一步演示了数据在 Transformer 中的流动过程.由于看过一些中文翻译的文章,感觉不够好,所以我自己翻译了一个版本,在一些难以直译的地方,我加入了一些原文没有的文字说明,来更好…
前言 Transfomer是一种encoder-decoder模型,在机器翻译领域主要就是通过encoder-decoder即seq2seq,将源语言(x1, x2 ... xn) 通过编码,再解码的方式映射成(y1, y2 ... ym), 之前的做法是用RNN进行encode-decoder,但是由于RNN在某一时间刻的输入是依赖于上一时间刻的输出,所以RNN不能并行处理,导致效率低效,而Transfomer就避开了RNN,因此encoder-decoder效率高. Transformer…