首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
关于PCA算法的一点学习总结
】的更多相关文章
关于PCA算法的一点学习总结
本文出处:http://blog.csdn.net/xizhibei ============================= PCA,也就是PrincipalComponents Analysis,主成份分析,是个非常优秀的算法,依照书上的说法: 寻找最小均方意义下,最能代表原始数据的投影方法 然后自己的说法就是:主要用于特征的降维 另外,这个算法也有一个经典的应用:人脸识别.这里略微扯一下,无非是把处理好的人脸图片的每一行凑一起作为特征向量,然后用PAC算法降维搞定之. PCA的主要思想是…
PCA算法学习(Matlab实现)
PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵 2.求样本矩阵的协方差矩阵 3.求协方差矩阵的特征值和特征向量 4.将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵.并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵. 5.用映射矩阵对数据进行映射,达到数据降…
OpenCV学习(35) OpenCV中的PCA算法
PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html 对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = p*q维的向量空间,比如100*100的灰度图像,它的向量空间为100*100=10000.下图是一个3*3的灰度图和表示它的向量表示: 该向量为行向量,共9维,用变量表示就是[v0, v1, v2, v3, v4, v5, v6, v7, v8],其中v0...v8,的范围都是0-255. …
PCA算法 | 数据集特征数量太多怎么办?用这个算法对它降维打击!
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第27文章,我们一起来聊聊数据处理领域的降维(dimensionality reduction)算法. 我们都知道,图片格式当中有一种叫做svg,这种格式的图片无论我们将它放大多少倍,也不会失真更不会出现边缘模糊的情况.原因也很简单,因为这种图片是矢量图,一般的图片存储的是每一个像素点的颜色值,而在矢量图当中,我们存储的是矢量,也就是起点终点以及颜色.由于矢量图只记录起点终点,所以无论我们如何放大,图片都不会失真,而…
PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?
PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) 假如你要处理一个数据集, 数据集中的每条记录都是一个\(d\)维列向量. 但是这个\(d\)太大了, 所以你希望把数据维度给降下来, 既可以去除一些冗余信息, 又可以降低处理数据时消耗的计算资源(用computation budget 来描述可能更形象). 用稍微正式点的语言描述: 已知:一个数据…
Netflix工程总监眼中的分类算法:深度学习优先级最低
Netflix工程总监眼中的分类算法:深度学习优先级最低 摘要:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树集成和深度学习,并谈了他的不同认识.他并不推荐深度学习为通用的分类技术. [编者按]针对Quora上的一个老问题:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain近日给出新的解答,他根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树集成和深度学习,并谈了他的不同…
用Python实现随机森林算法,深度学习
用Python实现随机森林算法,深度学习 拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态). 随机森林算法(Random forest algorithm)是对 bagging 算法的扩展.除了仍然根据从训练数据样本建立复合模型之外,随机森林对用做构建树(tree)的数据特征做…
关联规则算法Apriori的学习与实现
转自关联规则算法Apriori的学习与实现 首先我们来看,什么是规则?规则形如"如果-那么-(If-Then-)",前者为条件,后者为结果.关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系.关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息.例如购物篮分析.牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%意味3%顾客同时购买牛奶和面包.置信度40%意味购买牛奶的顾客40%也购买面包.规则的支持度和置信…
Raft算法,从学习到忘记
Raft算法,从学习到忘记 --Raft算法阅读笔记. --Github 概述 说到分布式一致性算法,可能大多数人的第一反应是paxos算法.但是paxos算法一直以来都被认为是难以理解,难以实现.So...Stanford的Diego Ongaro和John Ousterhout提出了Raft算法,这是一个更容易理解的分布式一致性算法,在算法的论文中,不仅详细描述了算法,甚至给出了RPC接口定义和伪代码,这显然更加容易应用到工程实践中.这两个算法在一定程度上是相通的,个人觉得Raft是加了更多…
模式识别(1)——PCA算法
作者:桂. 时间:2017-02-26 19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处,谢谢. 前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法…