「NOI2015」寿司晚宴 解题报告】的更多相关文章

「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现有个重要的事情是后面每个质因子\(x\)做统计的时候都是独立的,那么单独做就好了 显然要压两个人的前面质因子集合\(f_{i,j}\)代表两个人分别是\(i,j\)集合的答案,然后一块一块的加后面的质因子就好 加每一块时,我们显然需要处理谁选择了这一块或者都没选,再搞个\(dp_{0/1,i,j}\…
题解 怎么NOI2015D1--全是一眼秒的sb题--然后我代码全都写跪一遍= = 要是NOI2015是IOI赛制我就可以AK啦(大雾) 代码能力直线下降,NOI2018滚粗预定了啊TAT 我是不是要去开码农题啊QAQ 我们发现大于\(\sqrt{N}\)的素数只会在每个数里出现至多1个,而小于\(\sqrt{N}\)的素数只有8个 分别是 2 3 5 7 11 13 17 19 我们对于素因子只有这8个的数先做一遍dp,状态压缩是\(3^8\)每一位分别是0 1 2,表示这个素因子不在任何集合…
$n \leq 500$,$2-n$这些数字,两个人挑,可以重复挑,问有几种方案中,一个人选的所有数字与另一个人选的所有数字都互质. 不像前两题那么抠脚.. 如果$n$比较小的话,可以把两个人选的数字对应的质因子状压一下,$f(i,j,k)$--前$i$个数,第一个人选状态$j$,第二个人选状态$k$,状态表示质因子. 质因子的根号相关性质:根号n之后的每个质因子最多只会在一个数里出现一次.也就是说,对根号n前面的质因子我们是可能一次选若干种的,但根号n后面的每个质因子每次只能选一种,所以可以单…
「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就是每个值是否可以被表示,而这个问题有点像问你一个单点的是否可以被表示,这是它的特殊性. 我们把这个整数集排序后,假设当前表示的区间是\([1,x]\),这时候在线加入\(a\) 如果\(a\le x\),显然值域变成\([1,x+a]\),否则答案假设\(x+1\) 考虑如何优化这个过程,我们可不可…
「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操作2的合法性,我们不妨先不计合法性把所有点加到树中 显然每个点要连到在这个点之前的离这个点时间上最近那个1操作的点上 然后可以发现移动时1操作相当于很多个点换根 我们可以对每个1操作建一个虚点,然后就可以很方便换根了 那么如何保证查询操作呢? 可以把每个1操作的虚点大小设成0(代表它父亲边的直接长度…
「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的后缀是bc和c 否则 如果它的后缀(指在n个单词中的)在1~x-1全部出现了,代价为x-最后一个后缀的位置y 如果没有全部出现,代价n^2 看我气的连latex都懒得用了 然后你发现按后缀建字典树就可以了 然后你发现直接按子树大小贪心就可以了 但是我一开始偷懒就直接在trie上贪心走子树,这样是不行…
「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿倍增优化一下 Code: #include <cstdio> #include <cctype> #include <algorithm> #define int unsigned int const int N=4e5+10; template <class T&g…
「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstdio> const int mod=1e9+7; const int N=3e6+10; inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;} #define mul(a,b) (1ll*(a)*(b)%mod) int qp(int…
「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #include <cctype> #include <algorithm> #define ll long long const int N=3e5+10; template <class T> void read(T &x) { int f=0;x=0;char c=…
「JLOI2015」管道连接 先按照斯坦纳树求一个 然后合并成斯坦纳森林 直接枚举树的集合再dp一下就好了 Code: #include <cstdio> #include <cctype> #include <cstring> #include <algorithm> using std::min; const int N=1<<10; template <class T> void read(T &x) { x=0;cha…