深度学习---1cycle策略:实践中的学习率设定应该是先增再降 本文转载自机器之心Pro,以作为该段时间的学习记录 深度模型中的学习率及其相关参数是最重要也是最难控制的超参数,本文将介绍 Leslie Smith 在设置超参数(学习率.动量和权重衰减率)问题上第一阶段的研究成果.具体而言,Leslie Smith 提出的 1cycle 策略可以令复杂模型的训练迅速完成.它表示在 cifar10 上训练 resnet-56 时,通过使用 1cycle,能够在更少的迭代次数下,得到和原论文相比相同…
前面我们学习过深度学习中用于加速网络训练.提升网络泛化能力的两种策略:Batch Normalization(Batch Normalization)和Layer Normalization(LN).今天讨论另一种与它们类似的策略:Weight Normalization(Weight Normalization).Weight Normalization是Batch Normalization的一种变体,与Batch Normalization最大不同点:对神经网络的权值向量W进行参数重写Re…
摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们分别是同一个视频的第1,40,80帧.在第1帧给出一个跑步者的边框(bounding-box)之后,后续的第40帧,80帧,bounding-box依然准确圈出了同一个跑步者.以上展示的其实就是目标跟踪(visual object tracking)的过程.目标跟踪(特指单目标跟踪)是指:给出目标在…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 一.前言 二.深度学习模型 1. Factorization-machine(FM) FM = LR+ embedding 2. Deep Neural Network(DNN) 3. Factorisation-machine supported Neural Networks (FNN) 4. Product-based Neural Network(PNN) 5. Wide & Deep Lear…
1:神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,ACCURACY层了. 下图是能过$CAFFE_ROOT/python/draw_net.py绘制$CAFFE_ROOT/models/c…
一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比如对于复杂的问题我们可以在隐藏层上使用足够多的神经元就行了, 很长一段时间人们满足了就没有去探索深度神经网络, 但是深度神经网络有更高的参数效率,神经元个数可以指数倍减少,并且训练起来也更快!(因为每个隐藏层上面神经元个数减少了可以完成相同的功能,则连接的参数就少了) 就好像直接画一个森林会很慢,但…
问题描述 打开d2l-zh目录,使用jupyter notebook打开文件运行,import mxnet 出现无法导入mxnet模块的问题, 但是命令行运行是可以导入mxnet模块的. 原因: 激活环境是能够运行代码的前提. 解决方法: 在d2l-zh目录运行conda activate gluon命令,然后再打开jupyter notebook,则可以正常导入mxnet模块. 参考 1. d2l-zh-doc; 2. [动手学深度学习]中Jupyter notebook中 import mx…
kaggle竞赛 获取和读取数据集 数据预处理 找出所有数值型的特征,然后标准化 处理离散值特征 转化为DNArray后续训练 训练模型 k折交叉验证 预测样本,并提交结果 kaggle竞赛 本节将动手操作实践一个kaggle比赛,房价预测. 可以先将未经优化的数据的预处理,模型的设计和超参的选择,可以动手操作,观察实现的过程以及结果, 获取和读取数据集 比赛的数据分为训练数据集和测试数据集.两个数据集都包括每栋房子的特征,如阶段类型,建造年份,房顶类型,地下室状况等特征值.这些特征值有连续的数…
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域.我们必须定义大小,步长,padding类型池化神经元没有权重值,它只是聚合输入根据取最…
第一处: 书中62页定义的交叉熵函数定义有误,虽然这个所谓交叉熵的数值能够减少,但是是不能提升预测性能的,因为定义就错了. 我已经将预测过程可视化,直接将交叉熵改为我的,或者用原书的,就可以看到预测结果的变化. 第二处: 150页,lenet第三层卷积层的连接数目是(10*10*16*(5*5*6+1))=241600.因为本层输入矩阵的深度是6,输出矩阵的每个节点要与6个滤波器尺寸大小的矩阵产生联系. 程序下载: https://pan.baidu.com/s/1E8UIyd75gg6Z4Hp…