特征降维之PCA】的更多相关文章

目录 PCA思想 问题形式化表述 PCA之协方差矩阵 协方差定义 矩阵-特征值 PCA运算步骤 PCA理论解释 最大方差理论 性质 参数k的选取 数据重建 主观理解 应用 代码示例 PCA思想 PCA主要用于数据降维,是一种无监督学习方法.主成分分析利用正交变换将可能存在相关性的原始属性转换成一组线性无关的新属性,并通过选择重要的新属性实现降维.由一系列特征组成的多维向量,其中某些元素本身没有区分性,比如某个元素在所有样本中都相等,或者彼此差距不大,那么那个元素对于区分的贡献度小.我们的目的即为…
主成分分析: 降低特征维度的方法. 不会抛弃某一列特征, 而是利用线性代数的计算,将某一维度特征投影到其他维度上去, 尽量小的损失被投影的维度特征 api使用: estimator = PCA(n_components=20) pca_x_train = estimator.fit_transform(x_train) pca_x_test = estimator.transform(x_test) 分别使用支持向量机进行学习降维前后的数据再预测 该数据集源自网上 https://archive…
同为降维工具,二者的主要区别在于, 所在的包不同(也即机制和原理不同) from sklearn.decomposition import PCA from sklearn.manifold import TSNE 因为原理不同,导致,tsne 保留下的属性信息,更具代表性,也即最能体现样本间的差异: TSNE 运行极慢,PCA 则相对较快: 因此更为一般的处理,尤其在展示(可视化)高维数据时,常常先用 PCA 进行降维,再使用 tsne: data_pca = PCA(n_components…
2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci.edu/ml/ scikit-learn网址:http://scikit-learn.org/stable/datasets/index.html#datasets 2.1.2 安装scikit-learn工具 pip3 install Scikit-learn==0.19.1 安装好之后可以通过…
学习框架 特征工程(Feature Engineering) 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已 什么是特征工程: 帮助我们使得算法性能更好发挥性能而已 sklearn主要用于特征工程pandas主要用于数据清洗.数据处理 特征工程包含如下3个内容: 1.特征抽取/特征提取 |__>字典特征抽取,应用DiceVectorizer实现对类别特征进行数值化.离散化 |__>文本特征抽取,应用CounterVertorize/TfIdfVectorize实现对文本特征数…
一.主成分分析(PCA)介绍 什么是主成分分析?   主成分分析是一种用于连续属性降维的方法,把多指标转化为少数几个综合指标. 它构造了原始属性的一个正交变换,将一组可能相关的变量转化为一组不相关的变量,只需要少量变量就可以解释原始数据大部分信息.   主成分分析其实就是一个线性变换,这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推.主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最…
特征提取: 特征降维的手段 抛弃对结果没有联系的特征 抛弃对结果联系较少的特征 以这种方式,降低维度 数据集的特征过多,有些对结果没有任何关系,这个时候,将没有关系的特征删除,反而能获得更好的预测结果 下面使用决策树,预测泰坦尼克号幸存情况,对不同百分比的筛选特征,进行学习和预测,比较准确率 python3学习使用api 使用到联网的数据集,我已经下载到本地,可以到我的git中下载数据集 git: https://github.com/linyi0604/MachineLearning 代码:…
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法解释PCA,并举一个实例一步步计算,然后再进行数学推导,最后再介绍一些变种以及相应的程序.(数学推导及变种下次再写好了) 正文: 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计…
数据计算和结果展示一直是数据挖掘领域的难点,一般情况下,数据都拥有超过三维,维数越多,处理上就越吃力.所以,采用降维技术对数据进行简化一直是数据挖掘工作者感兴趣的方向. 对数据进行简化的好处:使得数据集更易于使用,降低算法的计算开销,去除噪声,使得结果易懂. 主成分分析法(PCA)是一种常用的降维技术.在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的.第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向. 为…
PCA(principle component analysis)主成分分析 理论依据 最大方差理论 最小平方误差理论 一.最大方差理论(白面机器学习) 对一个矩阵进行降维,我们希望降维之后的每一维数据能够有大的方差. 为什么呢? 因为每一维的方差越大,说明数据之间区分度高,想象一个极端的情况,降维之后的数据集所有维度 都是一样的值,方差为0,那么数据就没什么意义了,因为退化成了一条数据. 二维图生动形象 推导过程    对于n个样本,m维特征 (v1, v2, v3 ... vn), vi是m…