最长公共子串(LCS:Longest Common Substring)是一个非常经典的面试题目,本人在乐视二面中被面试官问过,惨败在该题目中. 什么是最长公共子串 最长公共子串问题的基本表述为:给定两个字符串,求出它们之间最长的相同子字符串的长度. 最直接的解法就是暴力解法:遍历所有子字符串,比较它们是否相同,然后去的相同子串中最长的那个.对于长度为n的字符串,它子串的数量为n(n-1)/2,假如两个字符串长度均为n,那么该解法的复杂度为O(n^4),想想并不是取出所有的子串,那么该解法的复杂…
题目 给定两个字符串str1和str2, 长度分别稳M和N,返回两个字符串的最长公共子串 解法一 这是一道经典的动态规划题,可以用M*N的二维dp数组求解.dp[i][j]代表以str1[i]和str2[j]当做公共子串结尾的情况下,公共子串能有多长.然后分析可以发现dp[i][j]只与dp[i- 1][j - 1]有关:当str1[i] 和str2[j]相等的时候, dp[i][j] = dp[i - 1][j - 1] + 1;当它们不相等的时候,dp[i][j] = 0.获得dp数组之后要…
目录 1. 最长递增序列 2. 最长公共子序列 3. 最长公共子串 1. 最长递增序列 给定一个序列,找出其中最长的,严格递增的子序列的长度(不要求连续). 解法一:动态规划 通过一个辅助数组记录每一个元素处的最大序列长度(在必须选这个元素的前提下),然后在坐标小于当前元素的数组扫描,在值小于当前元素的集合中选出最大值即为当前元素处的最大子序列.状态转移方程: dp[i] = max(1, max(dp[j]+1, j<i, nums[j]<nums[i]) class Solution: d…
水题,原来以为用dp数组  结果wrong了两次 我想还是自己小题大做了···呵呵·· 献给初学者作为参考 #include <stdio.h> #include <string.h> #define MAX 200 int getCommonStrLength(char * pFirstStr, char * pSecondStr) { int m = strlen(pFirstStr); int n = strlen(pSecondStr); int max = 0; int…
1. 两者区别 约定:在本文中用 LCStr 表示最长公共子串(Longest Common Substring),LCSeq 表示最长公共子序列(Longest Common Subsequence). 子串要求在原字符串中是连续的,而子序列则没有要求.例如: 字符串 s1=abcde,s2=ade,则 LCStr=de,LCSeq=ade. 2. 求最长公共子串(LCStr) 算法描述:构建如下图的矩阵dp[][],当s1[i] == s2[j] 的时候,dp[i][j]=1:最后矩阵中斜对…
public static int lcs(String str1, String str2) { int len1 = str1.length(); int len2 = str2.length(); int c[][] = new int[len1+1][len2+1]; for (int i = 0; i <= len1; i++) { for( int j = 0; j <= len2; j++) { if(i == 0 || j == 0) { c[i][j] = 0; } else…
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的最长公共子串方法.最长公共子串用动态规划可实现O(n^2)的时间复杂度,O(n^2)的空间复杂度:还可以进一步优化,用后缀数组的方法优化成线性时间O(nlogn):空间也可以用其他方法优化成线性.3.LIS(最长递增序列)DP方法可实现O(n^2)的时间复杂度,进一步优化最佳可达到O(nlogn)…
一.最长公共子序列问题(LCS问题) 给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子序列,并返回其长度.例如: A = "HelloWorld"    B = "loop" 则A与B的最长公共子序列为 "loo",返回的长度为3.此处只给出动态规划的解法:定义子问题dp[i][j]为字符串A的第一个字符到第 i 个字符串和字符串B的第一个字符到第 j 个字符的最长公共子序列,如A为“app”,B为“apple”,dp[2][3]…
链接:UVa 10192 题意:给定两个字符串.求最长公共子串的长度 思路:这个是最长公共子串的直接应用 #include<stdio.h> #include<string.h> int max(int a,int b) { return a>b?a:b; } int main() { char s[105],t[105]; int i,j,k=0,m,n,dp[105][105]; while(gets(s)!=NULL){ if(strcmp(s,"#"…
//Accepted 204 KB 891 ms //dp最长公共子串 //dp[i][j]=max(dp[i-1][j],dp[i][j-1]) //dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1) (s1[i]==s2[j]) #include <cstdio> #include <cstring> #include <iostream> using namespace std; ; ][imax_n]; char s1[imax_n];…