[模板]LIS(最长上升子序列)】的更多相关文章

LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for (int i = 1; i <= n; ++i) { dp[i] = 1; for (int j = 1; j < i; ++j) { if (a[j] < a[i]) { dp[i] = max(dp[i], dp[j] + 1); } } ans = max(ans, dp[i]); }…
P1439 [模板]最长公共子序列 题解 1.RE的暴力DP O(n2) 我们设dp[i][j]表示,S串的第i个前缀和T串的第j个前缀的最长公共子序列. ◦          分情况: ◦          如果S[i]==T[j],dp[i][j]=dp[i-1][j-1]+1; ◦          如果S[i]!=T[j],dp[i][j]=max(dp[i-1][j],dp[i][j-1]); ◦          最后答案就是dp[n][m] ◦          对于dp[i][j…
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的最长公共子串方法.最长公共子串用动态规划可实现O(n^2)的时间复杂度,O(n^2)的空间复杂度:还可以进一步优化,用后缀数组的方法优化成线性时间O(nlogn):空间也可以用其他方法优化成线性.3.LIS(最长递增序列)DP方法可实现O(n^2)的时间复杂度,进一步优化最佳可达到O(nlogn)…
E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Description The world financial crisis is quite a subject. Some people are more relaxed while others are quite anxious. John is one of them. He is very concerned a…
Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多少个元素.   Input 第一行输入一个T(≤T≤),表示有多少组数据 每一组数据: 第一行输入一个N(≤N≤),表示数列的长度 第二行输入N个数A1,A2,...,An. 每一个数列中的元素都是正整数而且不超过106.   Output 对于每组数据,先输出一行 Case #i: 然后输出最少需…
POJ 3903    Stock Exchange  (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87125#problem/E 题目: Description The world financial crisis is quite a subject. Some people are more relaxed while others are quite anxious. John…
\[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为自然数\(1-n\)的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 3 说明 [数据规模] 对于\(50%\)的数据,\(n≤1000\) 对于\(100%\)的数据,\(n≤100000\) 思路…
POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) 的数字序列, 要你求该序列中的最长(严格)下降子序列的长度. 分析:        读取全部输入, 将原始数组逆向, 然后求最长严格上升子序列就可以. 因为n的规模达到20W, 所以仅仅能用O(nlogn)的算法求.        令g[i]==x表示当前遍历到的长度为i的全部最长上升子序列中的最小序列末…
最长上升子序列 传送门 题意 对于给定的一个n个数的序列,找到它的一个最长的子序列,并且保证这个子序列是由低到高排序的. 例如,1 6 2 5 4 6 8的最长上升子序列为1 2 4 6 8. 基本思路 非常显然,这类题用dp求解. dp[i]表示已i为结尾的最长上升子序列的长度,首先枚举每一个末尾i,然后枚举从1到i-1,如果a[1...i-1]<a[i]说明满足上升子序列,就加上一后取max. 附上代码. //LIS O(n^2) #include<iostream> using n…
O(n^)的方法: #include <iostream> #include <stdio.h> #include <cstring> #include <algorithm> using namespace std; ],dp[],front[]; int n; int main() { scanf("%d",&n); ; ;i<=n;i++){ scanf("%d",&a[i]); dp[i]…
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数据,n≤100000 Solve 首先,来看一下N2N^2N2的算法: dp[i][j]={max(dp[i][j],dp[i…
题意:给两个长度为\(n\)的全排列,求他们的LCS 题解:这题给的数据范围到\(10^5\),用\(O(n^2)\)的LCS模板过不了,但由于给的是两个全排列,他们所含的元素都是一样的,所以,我们以第一个串为模板,第二个串的每一个元素都能对应到第一个串的元素的位置,第二串对映后的最长上升子序列,就是他们的LCS,也就是我们先离散化一遍,然后求一个LIS\((O(n logn))\)即可. 代码: #include <iostream> #include <cstdio> #inc…
动态规划 最长上升子序列问题(LIS).给定n个整数,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变).例如序列1, 6, 2, 3, 7, 5,可以选出上升子序列1, 2, 3, 5,也可以选出1, 6, 7,但前者更长.选出的上升子序列中相邻元素不能相等. 最容易想到的办法就是用一个数组f[i]保存到达第i个数的LIS 初始化f[i]=1 更新 f[i]=max{f[j]+1,f[i]|a[j]<a[i],1<=j<i} 即…
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个序列中的部分(不要求连续),这个就叫做公共子序列,然后最长公共子序列自然就是所有的子序列中最长的啦. public static int lcs(String s1, String s2) { int[][] dp = new int[s1.length()+1][s2.length()+1]; f…
E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Description The world financial crisis is quite a subject. Some people are more relaxed while others are quite anxious. John is one of them. He is very…
一,    最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm.求最大的m值. 比如int* inp = {9,4,3,2,5,4,3,2}的最长递减子序列为{9,5,4,3,2}: 二,解决: 1.用一个临时数组tmp保存这样一种状态:tmp[i]表示以i为终点的递增序列的长度: 比如inp =…
题意:一个含有n个元素的数组,删去k个连续数后,最长上升子序列        /*思路参考GoZy 思路: 4 2 3 [5 7 8] 9 11 ,括号表示要删掉的数, 所以  最长上升子序列  =   ] 右边数A的lis + [左边最大值小于A的lis 即相当于枚举删除的所有情况,并求它们的LIS,取最大值 如本例 : 最长 = 2[ 9 11]  + 2[2 3],  然后将框从左往右移,算出最大值 用nlog(n)求LIS: 对于a[i],在arr数组中用log(n)找到比它小的数的个数…
又是模板题呵,但这次的难度有点增加. 先看题目第一个想到DP的经典算法,要O(n^2),然后想其它的算法. 其实我们衢州市一次联考有一题很像这题,不过还要难一点. 思想是离散化+最长不下降子序列(在这里和最长上升子序列等价,因为没有重复的值) 先离散一下第二串里每个点的第一串里的位置(数组也可以,但我喜欢用map),如样例: 5 3 2 1 4 5 1 2 3 4 5 散出来就是 3 2 1 4 5,然后为了使他们公共最长,想到什么? 最长不下降子序列!为什么? 刚开始做的是根据他们的数值,但现…
题意:给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS. 思路:要求(nlogn)解法 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序列末尾值为x.(如果到目前为止, 根本不存在长i的上升序列, 那么x==INF无穷大) 假设当前遍历到了第j个值即a[j], 那么先找到g[n]数组的值a[j]的下确界k(即第一个>=a[j]值的g[k]的k值). 那么此时表明存在长度为k-1的最长上升子序列且该序列末尾的位置<j且该序列末尾值&…
Given an unsorted array of integers, find the length of longest increasing subsequence. For example,Given [10, 9, 2, 5, 3, 7, 101, 18],The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than o…
题目传送门 是一道十分经典的LCS问题 很容易想到  的一般算法:主题代码如下: for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++){ dp[i][j] = max (dp[i-1][j], dp[i][j-1]); if (a[i] == b[j]) dp[i][j] = max (dp[i][j], dp[i-1][j-1] + 1); } printf ("%d", dp[n][n]); 但往下看一眼数据…
每日一题 day40 打卡 Analysis 因为两个序列都是1~n 的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个book数组将A序列的数字在B序列中的位置表示出来 因为最长公共子序列是按位向后比对的,所以a序列每个元素在b序列中的位置如果递增,就说明b中的这个数在a中的这个数整体位置偏后,可以考虑纳入LCS——那么就可以转变成nlogn求用来记录新的位置的book数组中的LIS. #include<iostream> #include<cstdio&…
题意我就不写了.解法有3种: 1.O(n^2).2重循环枚举 i 和 j,f[i]表示前 i 位必选 a[i] 的最长上升子序列长度,枚举a[j]为当前 LIS 中的前一个数. 1 #include<cstdio> 2 #include<cstdlib> 3 #include<cstring> 4 #include<iostream> 5 using namespace std; 6 7 const int N=1010; 8 int a[N],f[N];…
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 复制 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 复制 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数据,n≤100000 题解: 刚开始看题以为是一道简单的LCS,但是一看数据到达的十万就知道不能用常规的LCS,之…
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 复制 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 复制 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数据,n≤100000 ****复杂度为nlogn哦,离散化,然后求最长上升序列 #include<cstdio>…
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 复制 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 复制 3 说明 [数据规模] 对于50%的数据,n≤1000 对于100%的数据,n≤100000 把第一个串和第二个串的位置进行匹配,然后就转化乘找最长上升子序列 #include<iost…
先来看一看普通的最长公共子序列 给定字符串A和B,求他们的最长公共子序列 DP做法: 设f[i][j]表示A[1~i]和B[1~j]的最长公共子序列的长度 那么f[i][j]=max(f[i-1][j],f[i][j-1]) 在上面的基础上,如果A[i]=B[j],则f[i][j]=max(f[i][j],f[i-1][j-1]+1) 代码: ;i<=n;i++) ;j<=m;j++) { dp[i][j]=max(dp[i-][j],dp[i][j-]); if(a1[i]==a2[j])…
正好训练赛来了一道最长递减序列问题,所以好好研究了一下最长递增序列问题. B - Testing the CATCHER Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1887 Description A military contractor for the Department of Defense has just complet…
namespace LIS { template <class T> int lis(vector<T> v) { ; vector<T> d; ;i<v.size();i++) { ,r=d.size(),m=; while(l<r) { m=(l+r)/; ; else r=m; } if(l==d.size()) d.push_back(v[i]); else d[l]=v[i]; } ;i<d.size();i++) cout<<d…
LIS n2解法: #include<iostream> #include<cstdio> using namespace std; int n,ans; ],f[]; int main() { scanf("%d",&n); ;i<=n;i++) { scanf("%d",&a[i]); f[i]=; ;j<i;j++) ,f[i]); ans=max(ans,f[i]); } printf("%d\n…