Datawhale开源 核心贡献者:王琦.杨逸远.江季 提起李宏毅老师,熟悉强化学习的读者朋友一定不会陌生.很多人选择的强化学习入门学习材料都是李宏毅老师的台大公开课视频. 现在,强化学习爱好者有更完善的学习资料了! Datawhale开源项目组成员总结了李宏毅的强化学习视频,实现了视频教程的完整梳理和复现,再也不用担心强化学习. 目前,项目已完全开源,包括课程内容.配套的习题和项目,供大家使用. 1. 李宏毅深度强化学习简介 李宏毅老师现任台湾大学电气工程系副教授,主要研究方向是机器学习,特别…
# 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016](https://webdocs.cs.ualberta.ca/~sutton/book/) ## 数学符号的含义 * 通用 $a$ - 行动(action). $A_t$ - 第t次的行动(select action).通常指求解的…
强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 数学符号说明 蒙特卡洛方法简话 蒙特卡洛是一个赌城的名字.冯·诺依曼给这方法起了这个名字,增加其神秘性. 蒙特卡洛方法是一个计算方法,被广泛…
强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 术语和数学符号 时序差分学习简话 时序差分学习结合了动态规划和蒙特卡洛方法,是强化学习的核心思想. 时序差分这个词不…
强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 20…
强化学习读书笔记 - 12 - 资格痕迹(Eligibility Traces) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 强化学习…
强化学习读书笔记 - 11 - off-policy的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 强化学习读书笔记 - 00…
强化学习读书笔记 - 10 - on-policy控制的近似方法 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 强化学习读书笔记 - 0…
强化学习读书笔记 - 09 - on-policy预测的近似方法 参照 Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 强化学习读书笔记 - 00 - 术语和数学符号 强化学习读书笔记 - 01 - 强化学习的问题 强化学习读书笔记 - 02 - 多臂老O虎O机问题 强化学习读书笔记 - 03 - 有限马尔科夫决策过程 强化学习读书笔记 - 04 -…
Outline 激活函数 使用逼近器的特点: 较少数量的参数表达复杂的函数 (计算复杂度) 对一个权重的调整可以影响到很多的点 (泛化能力) 多种特征表示和逼近器结构 (多样性) 激活函数 Sigmoid 激活函数 将神经元的输出压缩在 0 和 1 之间 永远都是正数 有界 严格递增 tanh 双曲正切函数 将神经元的输出压缩在 -1 和 1 之间 有正有负 有界 严格递增 线性整流 (Rectified Linear Unit, ReLU) 激活函数 以 0 作为下界 (永远都是非负的) 容易…