KL-Divergence KL散度】的更多相关文章

KL DivergenceKL( Kullback–Leibler) Divergence中文译作KL散度,从信息论角度来讲,这个指标就是信息增益(Information Gain)或相对熵(Relative Entropy),用于衡量一个分布相对于另一个分布的差异性,注意,这个指标不能用作距离衡量,因为该指标不具有对称性,即两个分布PP和QQ,DKL(P|Q)DKL(P|Q)与DKL(Q|P)DKL(Q|P)计算的值一般不相等,若用作距离度量,一般需要对公式加以修改,后文讲到. KL Dive…
Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler divergence[1][2][3] (also information divergence,information gain, relative entropy, or KLIC) is a non-symmetric measure of the difference between two…
1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们可能输入了一张图片表示的是苹果,那么对于这张输入图片的真实概率分布为y=(苹果:1,梨子:0),但是我们的模型…
https://www.cnblogs.com/silent-stranger/p/7987708.html 1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们…
Uplift Decision Tree With KL Divergence Intro Uplift model 我没找到一个合适的翻译,这方法主要应用是,探究用户在给予一定激励之后的表现,也就是在电商领域,比如我们给一部分用户发了一些优惠券,那么这些行为是否将"转化"用户呢?是否会起一些积极作用呢?Uplift Model是模拟增量操作对个人行为的影响的.(经济学的人研究) 而在决策树中,我们给一部分样本treatment,而不给另一部分样本treatment,这样相当于每个样本…
Kullback-Leibler divergence 形式: 性质: 非负 P=Q时,D[P||Q]=0 不对称性:D(P||Q)≠D(Q||P) 自信息:符合分布 P 的某一事件 x 出现,传达这条信息所需的最少信息长度为自信息,表达为 熵:从分布 P 中随机抽选一个事件,传达这条信息所需的最优平均信息长度为香农熵,表达为 交叉熵:用分布 P 的最佳信息传递方式来传达分布 Q 中随机抽选的一个事件,所需的平均信息长度为交叉熵,表达为 KL 散度:用分布 P 的最佳信息传递方式来传达分布 Q,…
转自:https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 https://blog.csdn.net/ericcchen/article/details/72357411 https://www.cnblogs.com/smuxiaolei/p/7400923.html 实际含义包括数据和假设的概率模型之间的差距,也可以理解为损失. 当以2为底时表示的是,以当前形式标识信息损失了多少位. 1.数据的熵 当底数…
L lower是什么? L lower, 既然大于,那么多出来的这部分是什么?如下推导: 得出了KL的概念,同时也自然地引出了latent variable q.…
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写一写很多童鞋们w未必完全理解的最大似然估计的部分. 单纯从原理上来说,最大似然估计并不是一个非常难以理解的东西.最大似然估计不过就是评估模型好坏的方式,它是很多种不同评估方式中的一种.未来准备写一写最大似然估计与它的好朋友们,比如说贝叶斯估计 (Beyasian Estimation), 最大后验估计(Max…
摘要:Laplace 用于 Laplace 分布的概率统计与随机采样. 本文分享自华为云社区<Laplace分布算子开发经验分享>,作者:李长安. 1.任务解析 详细描述: Laplace 用于 Laplace 分布的概率统计与随机采样, 此任务的目标是在 Paddle 框架中,基于现有概率分布方案进行扩展,新增 Laplace API,调用路径为:paddle.distribution.Laplace .类签名及各个方法签名,请通过调研 Paddle 及业界实现惯例进行设计.要求代码风格及设…