自然场景文本检测是图像处理的核心模块,也是一直想要接触的一个方面. 刚好看到国内的旷视今年在CVPR2017的一篇文章:EAST: An Efficient and Accurate Scene Text Detector.而且有开放的代码,学习和测试了下. 题目说的是比较高效,它的高效主要体现在对一些过程的消除,其架构就是下图中对应的E部分,跟上面的比起来的确少了比较多的过程.这与去年经典的CTPN架构类似.不过CTPN只支持水平方向,而EAST在论文中指出是可以支持多方向文本的…
CVPR2020论文解读:OCR场景文本识别 ABCNet: Real-time Scene Text Spotting with Adaptive Bezier-Curve Network∗ 论文链接:https://arxiv.org/pdf/2002.10200.pdf 摘要 场景文本的检测与识别越来越受到人们的关注.现有的方法大致可以分为两类:基于字符的方法和基于分割的方法.这些方法要么代价高昂,要么需要维护复杂的管道,这通常不适合实时应用.在这里,我们提出了自适应贝塞尔曲线网络(AB…
由于项目需要,对页面中过长的文本进行截取,鼠标移上去有一个title的提示,所以做了一个Jquery过长文本处理的插件下面是代码: // 掉用方式支持 $('select').textBeauty(10);支持链式调用$('.dddd').textBeauty().html('ssss'); ;(function ($) { $.fn.extend({ textBeauty: function (len) { len = len || 5; var title = $(this).text();…