导读: 本文主要介绍哔哩哔哩在数据湖与数据仓库一体架构下,探索查询加速以及索引增强的一些实践.主要内容包括: 什么是湖仓一体架构 哔哩哔哩目前的湖仓一体架构 湖仓一体架构下,数据的排序组织优化 湖仓一体架构下,索引增强与优化的实践探索 -- 01 什么是湖仓一体 当我们讲湖仓一体时,涉及到数据湖和数据仓库两个概念. 什么是数据湖?通常来说,它有以下几个特点: 有一个统一的存储系统,所有的数据都放到这个统一的存储系统里,没有数据孤岛. 支持任意数据类型,比较自由,包括结构化.半结构化和非结构化的数…
摘要:华为云发布新一代智能数据湖华为云FusionInsight时再次提到了湖仓一体理念,那我们就来看看湖仓一体的来世今生. 伴随5G.大数据.AI.IoT的飞速发展,数据呈现大规模.多样性的极速增长,为了应对多变的业务诉求,政企客户对数据处理分析的实时性和融合性提出了更高的要求,"湖仓一体"的概念应运而生,它打破数据湖与数仓间的壁垒,使得割裂数据融合统一,减少数据分析中的搬迁,实现统一的数据管理. 早在2020年5月份的华为全球分析师大会上,华为云CTO张宇昕提出了"湖仓一…
此前Apache Hudi社区一直有小伙伴询问能否使用Amazon Redshift查询Hudi表,现在它终于来了. 现在您可以使用Amazon Redshift查询Amazon S3 数据湖中Apache Hudi/Delta Lake表数据.Amazon Redshift Spectrum作为Amazon Redshift的特性可以允许您直接从Redshift集群中查询S3数据湖,而无需先将数据加载到其中,从而最大限度地缩短了洞察数据价值时间. Redshift Spectrum支持Lake…
徐昱 Apache Hudi Contributor:华米高级大数据开发工程师 巨东东 华米大数据开发工程师 1. 应用背景及痛点介绍 华米科技是一家基于云的健康服务提供商,拥有全球领先的智能可穿戴技术.在华米科技,数据建设主要围绕两类数据:设备数据和APP数据,这些数据存在延迟上传.更新频率高且广.可删除等特性,基于这些特性,前期数仓ETL主要采取历史全量+增量模式来每日更新数据.随着业务的持续发展,现有数仓基础架构已经难以较好适应数据量的不断增长,带来的显著问题就是成本的不断增长和产出效率的…
摘要:对云端用户而言,业务价值发现是最重要的,华为MRS支持LakeFormation后,成功降低了数据应用的成本,帮助客户落地"存"与"算"的管理,加快推进了数智融合进程,更大程度地释放业务数据价值. 本文分享自华为云社区<华为云MRS支持lakeformation能力,打造一站式湖仓,释放数据价值>,作者:breakDawn. 1 背景 1.1 数仓和数据湖的概念 数据分析技术在2010~2019年间,以湖仓两层架构技术作为主流被各数据厂商所应用,即…
摘要:华为LakeFormation是企业级的一站式湖仓构建服务. 本文分享自华为云社区<华为云MRS支持LakeFormation能力,打造一站式湖仓,释放数据价值]>,作者:breakDawn . 1 背景 1.1 数仓和数据湖的概念 数据分析技术在2010~2019年间,以湖仓两层架构技术作为主流被各数据厂商所应用,即大数据数仓+数据湖的技术形式. 大数据数仓:出现最早,也最完备,从单机向分布式.智能化发展.例如 Hive.华为DWS等 数据湖:狭义上的湖主要是云厂商参与,以统一的对象存…
1. 传统数据湖存在的问题与挑战 传统数据湖解决方案中,常用Hive来构建T+1级别的数据仓库,通过HDFS存储实现海量数据的存储与水平扩容,通过Hive实现元数据的管理以及数据操作的SQL化.虽然能够在海量批处理场景中取得不错的效果,但依然存在如下现状问题: 问题一:不支持事务 由于传统大数据方案不支持事务,有可能会读到未写完成的数据,造成数据统计错误.为了规避该问题,通常控制读写任务顺序调用,在保证写任务完成后才能启动读任务.但并不是所有读任务都能够被调度系统约束住,在读取时仍存在该问题.…
1. 业务背景介绍 客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票.一日游.特色体验.当地交通与美食预订服务.覆盖全球100个国家及地区,支持12种语言和41种货币的支付系统,与超过10000家商户合作伙伴紧密合作,为全球旅行者提供10万多种旅行体验预订服务. KLOOK数仓RDS数据同步是一个很典型的互联网电商公司数仓接入层的需求.对于公司数仓,约60%以上的数据直接来源与业务数据库,数据库有很大一部分为托管的AWS RDS-MYSQL 数据库,有超100…
1. 介绍 最近几周,人们对比较 Hudi.Delta 和 Iceberg 的表现越来越感兴趣. 我们认为社区应该得到更透明和可重复的分析. 我们想就如何执行和呈现这些基准.它们带来什么价值以及我们应该如何解释它们添加我们的观点. 2. 现有方法存在哪些问题? 最近 Databeans 发布了一篇博客,其中使用 TPC-DS 基准对 Hudi/Delta/Iceberg 的性能进行了正面比较.虽然很高兴看到社区挺身而出并采取行动提高对行业当前技术水平的认识,但我们发现了一些与实验进行方式和结果报…
目录 Delta Lake 特性 maven依赖 使用aws s3文件系统快速启动 基础表操作 merge操作 delta lake更改现有数据的具体过程 delta表schema 事务日志 delta表文件目录 事务日志的一些疑问 需要避免的操作 delta lake目前的不足 Delta Lake 特性 支持ACID事务 可扩展的元数据处理 统一的流.批处理API接口 更新.删除数据,实时读写(读是读当前的最新快照) 数据版本控制,根据需要查看历史数据快照,可回滚数据 自动处理schema变…