R读取大数据data.table包之fread】的更多相关文章

>library(data.table)>data=fread("10000000.txt")>Read 9999999 rows and 71 (of 71) columns from 3.375 GB file in 00:02:36##一千万行,耗时160s.##同样的数据用read.table函数读取要600s. 参考资料: R语言data.table速查手册:https://www.cnblogs.com/nxld/p/6059570.html https:…
R语言数据分析利器data.table包-数据框结构处理精讲 R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容…
    R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容 DT = data.table(x=rep(c("b&…
R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数据. # 用read.csv读取数据timestart<-Sys.time() data <- read.csv("XXXXs.csv",header = T,stringsAsFactors = F) timeend<-Sys.time() runningtime<…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始寻求数据操作的效率.于是,data.table这个包就可以很好的满足对大数据量的数据操作的需求. data.table可是比dplyr以及Python中的pandas还好用的数据处理方式. 网络上充斥的是data.table很好,很棒,性能棒之类的,但是从我实际使用来看,就得泼个水,网上博客都是拿一…
data.table包主要特色是:设置keys.快速分组和滚得时序的快速合并.data.table主要通过二元检索法大大提高数据操作的效率,同时它也兼容适用于data.frame的向量检索法. require(data.table) ## Loading required package: data.table 1.创建data.table格式数据 类似于data.frame数据的创建,使用data.table函数 (DF = data.frame(x=c("b","b&qu…
在第一节中,我们回顾了许多用于操作数据框的内置函数.然后,了解了 sqldf 扩展包,它使得简单的数据查询和统计变得更简便.然而,两种方法都有各自的局限性.使用内置函数可能既繁琐又缓慢,而相对于各式各样的 R 函数来说,SQL 又不够强大,所以用 sqldf 进行数据的汇总统计,也不容易.data.table 包提供了一个加强版的 data.frame.它运行效率极高,而且能够处理适合内存的大数据集,它通过 [ ] 实现了一种自然的数据操作语法.如果尚未安装,请运行以下命令:install.pa…
开发windows客户端接收RTP视频流,当h264视频达到1080P 60fps的时候,按包来调用recvfrom的函数压力比较大,存在丢包的问题,windows的完成端口的性能效果当然可以解决这个问题,而boost的asio在windows上是基于完成端口来开发的,所以采用boost的asio和环形缓冲区的方法,可以解决接收单路大数据量udp包中丢包的问题. 需要引入的头文件为: #include "CircledBuffer.h" #include <iostream>…
背景:目前表中只有5G(后期持续增长),但是其中一个字段(以下称为detail字段)存了2M(不一定2M,部分为0,平均下来就是2M),字段中存的是一个数组,数组中存N个json数据.这个字段如下: [{"A": "A", "B": "B", "C": "C", "D": "D"}...] 要是拆表的话,可能要拆好多个,要是存多行根据阿里巴巴<…
看到本文的标题,相信你会忍不住进来看看! 没错,本文要讲的就是这个重量级的东西,这个不仅仅支持单表查询,更能支持连接查询, 加入一个表10W数据,另一个表也是10万数据,当你用linq建立一个连接查询然后利用take,skip读取第N页数据的时候, 你的程序就挂了,因为,你很可能读取需要几十秒甚至几分钟以上. 下面来讲解一下,ASP.NET MVC + EF 利用存储过程读取大数据的详细过程. 1.首先,我们创建一个实体类PageinationInfo,主要用于分页,如下 public clas…
ASP.NET MVC + EF 利用存储过程读取大数据,1亿数据测试很OK 看到本文的标题,相信你会忍不住进来看看! 没错,本文要讲的就是这个重量级的东西,这个不仅仅支持单表查询,更能支持连接查询, 加入一个表10W数据,另一个表也是10万数据,当你用linq建立一个连接查询然后利用take,skip读取第N页数据的时候, 你的程序就挂了,因为,你很可能读取需要几十秒甚至几分钟以上. 下面来讲解一下,ASP.NET MVC + EF 利用存储过程读取大数据的详细过程. 1.首先,我们创建一个实…
melt函数可以将宽数据转化为长数据 dcast函数可以将长数据转化为宽数据 > DT = fread("melt_default.csv") > DT family_id age_mother dob_child1 dob_child2 dob_child3 1: 1 30 1998-11-26 2000-01-29 NA 2: 2 27 1996-06-22 NA NA 3: 3 26 2002-07-11 2004-04-05 2007-09-02 4: 4 32 2…
fread中nThread 参数的使用   注意默认nThread=getDTthreads(),即使用所有能用的核心,但并不是核心用的越多越好,本人亲自测试的情况下,其实单核具有较强的性能,只有在数据大于3Gb的情况下,开启11核(我的机器全部核心30多核)效率才比一个核心更高,而默认使用全部的核心效率一直非常低.因此对于不是非常巨大的文件,建议设置为1,不要使用全部核心 fread中sep是自动检测的   所以在循环读入文件的过程中,就算不同文件的分隔符不同,也可以循环一次性方便的读入: 还…
data.table 1.生成一个data.table对象 生成一个data.table对象,记为DT. library(data.table) :],V3=round(rnorm(),),V4=:) DT ##     V1 V2      V3 V4 ##  :    A   ##  :    B - ##  :    C - ##  :    A - ##  :    B   ##  :    C - ##  :    A - ##  :    B - ##  :    C   ## : …
  1.OpenXmlSDK是个很好的类库,可惜只能通过C#调用,C#的童鞋又福气了. 2.服务端程序由于没法安装office,所以这个对asp.net网站来说是最理想的库了.需要.net 4.0版本以上. 3.以流形式,sax模型读取大文件. using System; using System.Collections.Generic; using System.Linq; using System.Text; using DocumentFormat.OpenXml; using Docum…
方法一: try { List<DBUtility.CommandInfo> list = new List<DBUtility.CommandInfo>(); string strConn = "Provider=Microsoft.Ace.OleDb.12.0;" + "data source=" + path + ";Extended Properties='Excel 12.0; HDR=YES; IMEX=1'"…
最终的解决办法直接看 4 我的思路: 我用的都是utf-8编码,电脑系统win7, MySQL-Front进行数据库的可视化. 1.我用的是RStudio,先去设置R的默认编码: Tools→Global Options...→Code→Saving→如下 虽然设置了R的默认编码,但是问题仍然存在. 2.用dbSendQuery(con, "SET NAMES utf8"),  依旧是乱码 library("RMySQL"); con<-dbConnect(M…
var worksheet = workbook.Worksheets["工作表1"]; var maxN = worksheet.Range["A1"].End[excel.XlDirection.xlDown].Row; //从A1向下查找最低下的一个数据行的坐标 object[,] arr = worksheet.Range["A2:H" + maxN].Value2;…
可以参考:http://blog.sina.com.cn/s/blog_80572f5d0101anxw.html…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "…
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里主要介绍在基因组数据分析中可能会用到的函数. fread 做基因组数据分析时,常常需要读入处理大文件,这个时候我们就可以舍弃read.ta…
由于基因组数据过大,想进一步用R语言处理担心系统内存不够,因此想着将文件按染色体拆分,发现python,awk,R 语言都能够非常简单快捷的实现,那么速度是否有差距呢,因此在跑几个50G的大文件之前,先用了244MB的数据对各个脚本进行测试,并且将其速度进行对比. 首先是awk处理,awk进行的是逐行处理,具有自己的语法,具有很大的灵活性,一行代码解决,用时24S, #!/usr/bin/sh function main() { start_tm=date start_h=`$start_tm…
导入CSV.TXT文件 read.table函数:read.table函数以数据框的格式读入数据,所以适合读取混合模式的数据,但是要求每列的数据数据类型相同. read.table读取数据非常方便,通常只需要文件路径.URL或连接对象就可以了,也接受非常丰富的参数设置: file参数:这是必须的,可以是相对路径或者绝对路径(注意:Windows下路径要用斜杠'/'或者双反斜杠'\\'). header参数:默认为FALSE即数据框的列名为V1,V2...,设置为TRUE时第一行作为列名. dat…
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领域大放光彩.他尤其适合那些需要处理大型数据集(比如 1GB 到100GB)需要在内存中处理数据的人.不过这个包的一些符号并不是很容易掌握,因为这些操作方式在R中比较少见.这也是这篇文章的目的,为了给大家提供一个速查的手册. data.table的通用格式: DT[i, j, by],对于数据集DT,…
R语言︱数据集分组 大型数据集通常是高度结构化的,结构使得我们可以按不同的方式分组,有时候我们需要关注单个组的数据片断,有时需要聚合不同组内的信息,并相互比较. 一.日期分组 1.关于时间的包都有很多很好的日期分组应用. 2.cut()函数 cut(x, n):将连续型变量x分割为有着n个水平的因子 cut(x, breaks, labels = NULL, include.lowest = FALSE, right = TRUE, dig.lab = 3, ordered_result = F…
利用data.table包变形数据 一. 基础概念 data.table 这种数据结构相较于R中本源的data.frame 在数据处理上有运算速度更快,内存运用更高效,可认为它是data.frame 的升级版.同时,data.table 包具备更多更强的功能,它基本工作形式是, dt [i, j, by] dt 为data.table 结构 i 为行,j 为列,by 为分组 二. 创建 data.table 和data.frame一样,如下: data.table(a=c(1, 2), b=c(…
data.table包提供了一个非常简洁的通用格式:DT[i,j,by]. 可以理解为:对于数据集DT,选取子集行i,通过by分组计算j. 对比与dplyr等包,data.table的运行速度更快. 创建方式和data.frame 一样 创建一个data.frame: DF = data.frame(x=c("b","b","b","a","a"),v=rnorm(5)) 创建一个data.table: D…
本文有两重目的,一是在性能方面快速对比下R语言和Spark,二是想向大家介绍下Spark的机器学习库 背景介绍 由于R语言本身是单线程的,所以可能从性能方面对比Spark和R并不是很明智的做法.即使这种比较不是很理想,但是对于那些曾经遇到过这些问题的人,下文中的一些数字一定会让你很感兴趣. 你是否曾把一个机器学习的问题丢到R里运行,然后等上好几个小时?而仅仅是因为没有可行的替代方式,你只能耐心地等.所以是时候去看看Spark的机器学习了,它包含R语言大部分的功能,并且在数据转换和性能上优于R语言…
Excel下载 首先大数据量的下载,一般的Excel下载操作是不可能完成的,会导致内存溢出 SXSSFWorkbook 是专门用于大数据了的导出 构造入参rowAccessWindowSize 这个参数,会指定一个sheet可读取的row数目,超过该数目的row,会被写入到磁盘文件中,进而不能在通过getRow访问到,通过这种方式,内存使用空间就缩小很多了. 需要注意的是,如果该值指定为-1,说明不限制行数,所有记录都写入内存中:该值不能取0,因为这意味着任何新row都会写入磁盘,进而不能访问,…