题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了保证团队的和谐,JYY需要保证,如果招募了候选人i,那么候选人Ri"也一定需要在团队中.当然了,JYY自己总是在团队里的.每一个候选人都有一个战斗值Pi",也有一个招募费用Si".JYY希望招募K个候选人(JYY自己不算),组成一个性价比最高的团队.也就是,这K个被JYY选择的候…
题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候选人都由一位编号比他小的候选人\(R_i\)推荐.如果\(R_i=0\)则说明这个候选人是茜茜自己看上的.为了保证团队的和谐,茜茜需要保证,如果招募了候选人\(i\),那么候选人\(R_i\)也一定需要在团队中.当然了,茜茜自己总是在团队里的.每一个候选人都有一个能力值\(P_i\),也有一个招募费…
BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{\sum P_i}{\sum S_i}\)最大对吧,考虑二分一个答案\(mid\) 那么就会有合法条件\(\dfrac{\sum P_i}{\sum S_i}\ge mid\),化简一下:\(\sum{(P_i-S_i×mid)}\ge 0\) 所以每次二分一个\(mid\)之后得到一个新数组v[i…
题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复杂度要优化成\(O(n^2)\)的,可以参考之前写的这篇博客 #include <cstdio> #include <algorithm> using std::min; using std::max; const int N = 3e3 + 10, inf = 1e9 + 7; co…
菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形依赖背包,所以之前写的十几发WA和TLE都是错误写法,我还是naive啊T T 树形依赖背包的普遍做法是按dfs序DP,设f[i][j]为dfs序为i的点,已经选了j个点的最大价值,nxt[i]为i的下一个子树的dfs序则有: f[nxt[i]][j]=f[i][j] f[i+1][j+1]=f[i][j…
要求比值最大,当然用分数规划. 二分答案,转化为选取一个最大的联通块使得它们的和大于0 然后我们直接DP. 复杂度$O(n^2\log {n})$ #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namesp…
$ \color{#0066ff}{ 题目描述 }$ 某地方有N个工厂,有N-1条路连接它们,且它们两两都可达.每个工厂都有一个产量值和一个污染值.现在工厂要进行规划,拆除其中的M个工厂,使得剩下的工厂依然连成一片且 总产量/总污染 的值最大. \(\color{#0066ff}{输入格式}\) 第一行N M(1<N<100,1<=M<N),表示工厂个数和要拆除的个数. 第二行N个正整数,表示每个工厂的产值[1..10000] 第三行N个正整数,表示每个工厂的污染值[1..1000…
题意:01分数规划,但可选的数字之间存在森林形的依赖关系(可以认为0号点是个虚根,因为并不能选). 虽然有森林形的依赖关系,但还是可以套分数规划的思路,二分答案k,判断是否存在一个比值大于k的方案 即是否存在一种选取方式使得sigma{fight[i],i is choosed}/sigma{cost[i],i is choosed}>=k 移项,发现只需要sigma{fight[i]-cost[i]*k,i is choosed}>=0,也就是把每个点的权值设置成”战斗力-花费*比值”,判断…
看到比值先二分答案.于是转化成一个非常裸的树形背包.直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对.这里使用一种更通用的dfs序优化树形背包写法.https://www.cnblogs.com/zzqsblog/p/5537440.html 即设f[i][j]为在dfs序第i~n个点中选j个(所选点不一定连通)的最大权值,考虑是否选择第i个点,如果不选显然f[i][j]=f[i+size][j],否则f[i][j]=f[i+1][j-1]+v[i].注意dp过程中虽然没有…
正解:二分+$dp$ 解题报告: 传送门$QwQ$ 这题长得好套路嗷,,,就一看就看出来是个$01$分数规划+树形$dp$嘛$QwQ$. 考虑现在二分的值为$mid$,若$mid\leq as$,则有$\frac{\sum p_i}{\sum s_i}\geq mid,\sum p_i-mid\cdot \sum s_i\geq 0$. 于是就把每个点的点权改为$mid\cdot s-p$.现在变成要选$K$个节点使得点权之和取$max$. 于是就树形$dp$呗?设$f_{i,j}$表示点$i$…