自编码器是无监督学习领域中一个非常重要的工具.最近由于图神经网络的兴起,图自编码器得到了广泛的关注.笔者最近在做相关的工作,对科研工作中经常遇到的:自编码器(AE),变分自编码器(VAE),图自编码器(GAE)和图变分自编码器(VGAE)进行了总结.如有不对之处,请多多指正.     另外,我必须要强调的一点是:很多文章在比较中将自编码器和变分自编码器视为一类,我个人认为,这二者的思想完全不同.自编码器的目的不是为了得到latent representation(中间层),而是为了生成新…
学习总结于国立台湾大学 :李宏毅老师 自编码器 AE (Auto-encoder)    & 变分自动编码器VAE(Variational Auto-encoder)                    学习编码解码过程,然后任意输入一个向量作为code通过解码器生成一张图片. VAE与AE的不同之处是:VAE的encoder产生与noise作用后输入到decoder            VAE的问题:VAE的decoder的输出与某一张越接近越好,但是对于机器来说并没有学会自己产生real…
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x264源代码简单分析:x264命令行工具(x264.exe) x264源代码简单分析:编码器主干部分-1 x264源代码简单分析:编码器主干部分-2 x264源代码简单分析:x264_slice_write() x264源代码简单分析:滤波(Filter)部分 x264源代码简单分析:宏块分析(Anal…
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x264源代码简单分析:x264命令行工具(x264.exe) x264源代码简单分析:编码器主干部分-1 x264源代码简单分析:编码器主干部分-2 x264源代码简单分析:x264_slice_write() x264源代码简单分析:滤波(Filter)部分 x264源代码简单分析:宏块分析(Anal…
控制任务 检测编码器的脉冲并测速 电路设计 图1 直流电机带减速器和编码器 图2  编码器接线定义 编码器接线定义如下 M1:电机电源接口,绿色的 GND:编码器电源负极输入口,橙色的 C1:编码器A相输出,黄色的,接Arduino控制板2号引脚 C2:编码器B相输出,白色的,接Arduino控制板3号引脚 3.3V:编码器电源正极输入口(兼容3.3V.5V),红色的 M2:电机电源接口,黑色的, 程序设计 1 int motor_c_ENA=6; //控制板与驱动板的引脚连接 2 int mo…
项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限,部分程序出图不一一展示,详情进入项目链接即可 图机器学习(GML)&图神经网络(GNN)原理和代码实现(PGL)[前置学习系列二] 上一个项目对图相关基础知识进行了详细讲述,下面进图GML networkx :NetworkX 是一个 Python 包,用于创建.操作和研究复杂网络的结构.动力学和功…
关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码”这一概念. 早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片.而这些图像碎片几乎都可由64种正交的边组合得到.而且组合出一张碎片所需的边的数目很少,即稀疏的.同时在音频中大多数声音也可由几种基本结构组合得到.这其实就是特征的稀疏表达.即使用少量的基本特征来组合更加高层抽象的特征.在神经网络中…
经典算法·GAN与VAE Generative Adversarial Networks 及其变体 生成对抗网络是近几年最为经典的生成模型的代表工作,Goodfellow的经典工作.通过两个神经网络结构之间的最大最小的博弈游戏然后生成模型.下面是原始GAN与一些GAN的变体. Generative Adversarial Nets(GAN) 模型判别模块与生成模块的损失的定义: 网络结构是: 该结构的最大的问题有两个:一个是难以训练,一个是模型输出图片单调(model collapse). Co…
一.目录 自动编码(AE)器的简单实现 一.目录 二.自动编码器的发展简述 2.1 自动编码器(Auto-Encoders,AE) 2.2 降噪自编码(Denoising Auto-Encoders, DAE)(2008) 2.3 堆叠降燥自动编码器 (Stacked Denoising Auto-Encoders, SAE)(2008) 2.4 卷积自动编码器(Convolution Auto-Encoders, CAE)(2011) 2.5 变分自动编码器(Variational Auto-…
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning论文作者: Kaize Ding .Yancheng Wang .Yingzhen Yang.…