Modular_exponentiation模幂运算】的更多相关文章

https://en.wikipedia.org/wiki/Modular_exponentiation 蒙哥马利(Montgomery)幂模运算是快速计算a^b%k的一种算法,是RSA加密算法的核心之一. 蒙哥马利模乘的优点在于减少了取模的次数(在大数的条件下)以及简化了除法的复杂度(在2的k次幂的进制下除法仅需要进行左移操作).模幂运算是RSA 的核心算法,最直接地决定了RSA 算法的性能. 针对快速模幂运算这一课题,西方现代数学家提出了大量的解决方案,通常都是先将幂模运算转化为乘模运算.…
RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多,但解密的时候,这个e2是一个非常非常大的数,显然,直接通过e2次模乘来解密是不现实的. 为了让RSA的加密.解密成为现实,我们必须要找一个好的算法来做模幂运算. 借上一节我设定的符号,以区别于传统上的幂的数学表示, 定义a#b为a和b的模乘, 定义a##n为n个a的模乘,或称a的n阶模乘. a =…
模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一定为1),如果遇到一个b[i]=0,则那么此时的结果就是b[i+1]时的结果的平方,若果b[i]=1,则结果是b[i+1]时的结果的平方再乘一个a 从b的角度理解,比如,二进制为 100 ,此时b=4,当下一位为0时,也就是 1000,即b=8,则此时的a^8=(a^4)^2 ,若果下一位为1,即二…
Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael can control the elements and combine them to invoke a powerful skill. Vance like Kael very much so he changes the map to make Kael more powerful.  In…
链接:http://poj.org/problem?id=1026 Cipher Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21436   Accepted: 5891 Description Bob and Alice started to use a brand-new encoding scheme. Surprisingly it is not a Public Key Cryptosystem, but t…
CARDS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1448   Accepted: 773 Description Alice and Bob have a set of N cards labelled with numbers 1 ... N (so that no two cards have the same label) and a shuffle machine. We assume that N i…
codevs 2541 幂运算  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 从m开始,我们只需要6次运算就可以计算出m31: m2=m×m,m4=m2×m2,m8=m4×m4,m16=m8×m8,m32=m16×m16,m31=m32÷m. 请你找出从m开始,计算mn的最少运算次数.在运算的每一步,都应该是m的正整数次方,换句话说,类似m-3是不允许出现的. 输入描述 Input Description 输入为一…
题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd97f192279e9fb.html 结论一: 一个长度为 l 的循环 T,l 是 k 的倍数,则 T^k 是 k 个循环的乘积,每个循环分别是循环 T 中下标 i mod k=0,1,2- 的元素按顺序的连接. 结论二:一个长度为 l 的循环 T,gcd(l,k)=1,则 T^k 是一个循环,与循环 T 不一…
void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 string getNumString(int* num); //判断两个数字哪个大 int compare(string numAStr, string numBStr); //加法 string sum(string numAStr, string numBStr); //减法 string sub…
# ### python运算符 #(1) 算数运算符: + - * / //(地板除) %(取余) **(幂运算) var1 = 5 var2 = 8 # +res = var1 + var2 print(res) # - res = var1 - var2 print(res) # * res = var1 * var2 print(res) # /(除法,结果一定是小数) var1 = 8 var2 = 2 res = var1/var2 print(res) # // 地板除(整除) va…