POJ 1637 Sightseeing tour 建图+网络流】的更多相关文章

题意: 给定一个混合图,所谓混合图就是图中既有单向边也有双向边,现在求这样的图是否存在欧拉回路. 分析: 存在欧拉回路的有向图,必须满足[入度==出度],现在,有些边已经被定向,所以我们直接记录度数即可,对于无向边呢? 对于这样的边,我们只需要先随便定向,然后记录出入度.(这些边只用来计算出入度,不用于网络流建图) 然后我们开始建图.现在极有可能有些点是不满足[入度==出度]的,所以我们要通过一些变向操作,使得图中所有点满足判定. 如果一个点入度和出度的奇偶性不同,那整张图一定是不合法的.因为改…
题目链接 题意 给定一个混合图,里面既有有向边也有无向边.问该图中是否存在一条路径,经过每条边恰好一次. 思路 从欧拉回路说起 首先回顾有向图欧拉回路的充要条件:\(\forall v\in G, d_{in}(v)=d_{out}(v)\). 现在这个图中有一些无向边,那怎么办? 那就转化成有向边呀. 对无向边随意定向,得到一个有向图.在这个有向图中,如果有\(\forall v\in G, abs(d_{in}(v)-d_{out}(v))\)为偶数,则将其中一些边反向,肯定能得到一个欧拉图…
Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beautiful city. They want to construct the tour so that every street in the city is vis…
[题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路.因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路. 好了,现在每个点入度和出度之差均为偶数.那么将这个偶数除以2,得x.也就是说,对于每一个点,只要将x条边改变方向(入>出就是变入,出>入就是变出),就能保证出=入.如果每个点都是出…
题目链接 建个图,套个模板. #include <cstdio> #include <cstring> #include <iostream> #include <map> #include <algorithm> #include <vector> #include <string> #include <queue> using namespace std; #define INF 0x3ffffff str…
POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.net/pi9nc/article/details/12223693 先把有向边随意定向了,然后依据每一个点的入度出度之差,能够确定每一个点须要调整的次数,然后中间就是须要调整的边,容量为1,这样去建图最后推断从源点出发的边是否都满流就可以 代码: #include <cstdio> #includ…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beauti…
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=1637 Time Limit: 1000MS Memory Limit: 10000K Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that t…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8628   Accepted: 3636 Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beauti…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6448   Accepted: 2654 Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beauti…
题目:http://poj.org/problem?id=1637 建图很妙: 先给无向边随便定向,这样会有一些点的入度不等于出度: 如果入度和出度的差值不是偶数,也就是说这个点的总度数是奇数,那么一定无解: 随便定向后,如果定向 x -> y,那么从 y 向 x 连一条容量为1的边,将来选了这条边,表示重新定向成 y -> x 了: 考虑如果选了这条边,那么 x 的出度-1,入度+1,变化量是2: 所以对于每个点,如果入度>出度,从源点向它连容量为 (入度-出度)/2 的边,因为刚才改…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9276   Accepted: 3924 Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beauti…
题意 (混合图的欧拉回路判定) 给你一个既存在有向边, 又存在无向边的图. 问是否存在欧拉回路. \(N ≤ 200, M ≤ 1000\) 题解 难点在于无向边. 考虑每个点的度数限制. 我们先对无向边任意定向, 现在每个点都有一个出度和入度的差; 而我们要求最终每个点出度和入度相等. 令它出度减去入度为 \(deg​\) ,如果 \(deg​\) 为奇数那么必不存在欧拉回路,因为每次我们修改一条边的定向,会使得入度 \(+1​\) 出度 \(-1​\) (或者相反).那么变化后的 \(deg…
http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图的要求是所有顶点的度数为偶数. 但不管是那个,顶点的度数若是奇数,那都是不能构成的. 这道题目是非常典型的混合图欧拉回路问题,对于双向边,我们先随便定个向,然后就这样先记录好每个顶点的入度和出度. 如果有顶点的度数为奇数,可以直接得出结论,是不能构成欧拉回路的. 那么,如果都是偶数呢? 因为还会存在…
混合图的欧拉回路判定方法: 1.首先判断基图是否连通,不连通的话表示不可能,否则进入下一步. 2.对于无向边,随便确定一个方向 3.确定好了之后,整张图就变成了有向图,计算每个节点的入度与出度 4.如果有一个节点的入度—出度是奇数,那么表示不可能,否则进入下一步 5.建立网络,新增一个原点s,和汇点t,然后建立网络 ; i<=M; i++) )//如果是有向边 AddEdge(u[i],v[i],); ; i<=N; i++) { if(Ru[i]>Chu[i]) AddEdge(i,t…
题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去1表示改了一条边的方向,会使自己出度-1.入度+1,所以容量要/2:出度大于入度的点类似地连向汇点:无向边按给它定的方向的反方向连上容量为1的边:最后看看能否满流即可. #include<cstdio> #include<cstring> #include<algorithm&g…
参考:https://www.cnblogs.com/kuangbin/p/3537525.html 这篇讲的挺好的 首先分清欧拉路和欧拉环: 欧拉路:图中经过每条边一次且仅一次的路径,要求只有两个点的出入度之差为奇数,这两个点即为欧拉路的起点和终点 欧拉环:图中经过每条边一次且仅一次的环,要求全部点的出入度之差为偶数 这道题中要判定的是欧拉路.首先看是否满足"只有两个点的出入度之差为奇数"这个条件,可以发现尽管有没有定向的边,但是出入的之差的奇偶是不变的:假设一条从i出发的边变向为到…
把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路.因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路: 好了,现在每个点入度和出度之差均为偶数.那么将这个偶数除以2,得x.也就是说,对于每一个点,只要将x条边改变方向(入>出就是变入,出>入就是变出),就能保证出=入.如果每个点都是出=入,那么很明显,该图就存在欧拉回路. #include<iostream> #include<cstring…
                                                            Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9100   Accepted: 3830 Description The city executive board in Lund wants to construct a sightseeing tour by bus…
Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 题目链接:http://poj.org/problem?id=1637 Description: The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that touri…
很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很妙! 题意就是有N头牛,F个食物,D个饮料. N头牛每头牛有一定的喜好,只喜欢几个食物和饮料. 每个食物和饮料只能给一头牛.一头牛只能得到一个食物和饮料. 而且一头牛必须同时获得一个食物和一个饮料才能满足.问至多有多少头牛可以获得满足. 最初相当的是二分匹配.但是明显不行,因为要分配两个东西,两个东…
[BZOJ3681]Arietta Description Arietta 的命运与她的妹妹不同,在她的妹妹已经走进学院的时候,她仍然留在山村中.但是她从未停止过和恋人 Velding 的书信往来.一天,她准备去探访他.对着窗外的阳光,临行前她再次弹起了琴.她的琴的发声十分特殊.让我们给一个形式化的定义吧.所有的 n 个音符形成一棵由音符 C ( 1 号节点) 构成的有根树,每一个音符有一个音高 Hi .Arietta 有 m 个力度,第 i 个力度能弹出 Di 节点的子树中,音高在 [Li,R…
暴力建图显然就是S->i连1,i->j'连inf(i为第j个力度能弹出的音符),j'->T连T[j]. 由于是“某棵子树中权值在某区间内的所有点”都向某个力度连边,于是线段树优化建图.由于是在树上所以需要可持久化线段树合并. 理论上可能空间会被卡,但是实际上并不能卡掉,边数最大点都不超过100W. 相比之下不太清楚为什么网上的dsu on tree做法为什么理论上就能过(可能是常数问题?),以及不理解为什么不用普通的启发式合并而非要用轻重链剖分. #include<cstdio&g…
(点击查看原题) 题目分析 (以下均为 Edelweiss 大佬的思路,博主承认自己写不了这么好,但是学习的心促使我记录下这个好题的写法,所以代码是我写的) [题目大意] 有 M 个猪圈,每个猪圈里初始时有若干头猪.一开始所有猪圈都是关闭的.依 次来了 N 个顾客,每个顾客分别会打开指定的几个猪圈,从中买若干头猪.每 个顾客分别都有他能够买的数量的上限.每个顾客走后,他打开的那些猪圈中的 猪,都可以被任意地调换到其它开着的猪圈里,然后所有猪圈重新关上.问总共 最多能卖出多少头猪.(1 <= N…
题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. 对于这道题,我们先随便给无向边定个向.这时能够形成欧拉回路的必须条件就是每个点的入度和出度之差为偶数. 在满足了这个条件之后,我们通过网络流来判断是否可以形成欧拉回路. 下面用\(rd\)表示入度,\(cd\)表示出度. 首先对于入度小于出度的点,我们从\(S\)向这个点连一条权值为\((cd -…
题目链接:http://poj.org/problem?id=3281 #include <cstdio> #include <cmath> #include <algorithm> #include <iostream> #include <cstring> #include <queue> #include <vector> #define maxn 105 #define maxe 20000 using names…
题目链接:http://poj.org/problem?id=3281 看了kuangbin大佬的思路,还用着kuangbin板子orz   http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html #include<cstdio> #include<cstring> using namespace std; ; ; const int INF = 0x3f3f3f3f; struct Edge { int to…
题意 :  在某国,城市之间建起了长城,每一条长城连接两座城市.每条长城互不相交.因此,从一个区域到另一个区域,需要经过一些城镇或者穿过一些长城.任意两个城市A和B之间最多只有一条长城,一端在A城市,另一端在B城市.从A走到B,可以只在一个区域内行走,或者只在长城上行走. 有一个俱乐部,它的会员分布在不同的城市中,每个城市要么只有一个会员,要么没有会员.会员们决定要集中到一个区域内聚会.他们骑车前往目的地.首先,由于城市内交通太堵,他们不想进入任何一个城市内,其次,他们希望穿越尽可能少的长城.他…
这个最小覆盖但不同于 POJ 3041,只有横或者竖方向连通的点能用一块板子覆盖,非连续的,就要用多块 所以用类似并查集方法,分别横向与竖向缩点,有交集的地方就连通,再走一遍最大匹配即可 一开始还有点没想清楚缩点怎么写,其实就是横向和竖向分别缩一下,不要混在一起,否则很麻烦,要注意一下 #include <iostream> #include <cstdio> #include <cstring> using namespace std; ][]; ][],b[][],…
传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个方向, 然后连一条边, 权值为1. 最后统计入度出度, 如果一个点的(入度-出度)%2==1, 就说明不存在欧拉回路. 如果全都满足, 就判断每个点的入度出度的大小关系, 入度>出度, 就向汇点连一条边, 权值为(入度-出度)/2, 相反的话就向源点连边. 跑一遍最大流, 看是否满流, 如果满流就说…