TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area, https://www.zhihu.com/question/30643044 T/F表示 true/false  表示预测的是不是对的 P/N表示 positive/negative  表示实际数据是正样本还是负样本 P/N表示 positive/negative  表示预测数据是正样本还是负样本   TP: 预测为1, 实际为1,预测正确 FP: 预测为1, 实际为0,预测错误…
1. TP TN FP FN ​ GroundTruth 预测结果 TP(True Positives): 真的正样本 = [正样本 被正确分为 正样本] TN(True Negatives): 真的负样本 = [负样本 被正确分为 负样本] FP(False Positives): 假的正样本 = [负样本 被错误分为 正样本] FN(False Negatives):假的负样本 = [正样本 被错误分为 负样本] 2. Precision(精度)和 Recall(召回率) \(Precisi…
TP.True Positive   真阳性:预测为正,实际也为正 FP.False Positive  假阳性:预测为正,实际为负 FN.False Negative 假阴性:预测与负.实际为正 TN.True Negative 真阴性:预测为负.实际也为负. 也就是说,预测和实际一致则为真,预测和实际不一致则为假:如果预测出来是“正”的,则为“阳”,预测结果为 “负”,则为“阴”. 先看一个简单的二分类问题. 比如说总共有100个人,其中60个人患有疾病,40个人是健康的.我们的要找出里面的…
目标检测coco数据集点滴介绍 1.  COCO数据集介绍 MS COCO 是google 开源的大型数据集, 分为目标检测.分割.关键点检测三大任务, 数据集主要由图片和json 标签文件组成. coco数据集有自带COCO API,方便对json文件进行信息读取.本博客介绍是目标检测数据集格式的制作. COCO通过大量使用Amazon Mechanical Turk来收集数据.COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(…
目录 关键术语 方法 two stage one stage 共同存在问题 多尺度 平移不变性 样本不均衡 各个步骤可能出现的问题 输入: 网络: 输出: 参考资料 What is detection? detection的任务就是classification+localization cs231n 课程截图 从左到右:语义分割semantic segmentation,图片分类classification,目标检测detection,实例分割instance segmentation 关键术语…
目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 Average Precision mAP 参考资料 metrics 评价方法 针对谁进行评价? 对于物体分类到某个类别的 预测结果 和 真实结果 的差距进行评价(二分类) 在多分类问题中,评价方法是逐个类计算的,不是所有类一起算!是只针对一个类算,每个类别有自己的指标值! 也就是对每个类别,预测结果…
背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红.既然convNet在图像分类任务上能取得好成绩,是不是也能放到目标检测任务上呢.本文就是用convNet解决目标检测任务的首次探索.在PASCAL VOC 2010上的mAP达到了53.7%. 方法 模型一共分为三个模块. (1)region proposals(区域推荐)).在一张整图上面产生很…
CVPR2019目标检测方法进展综述 置顶 2019年03月20日 14:14:04 SIGAI_csdn 阅读数 5869更多 分类专栏: 机器学习 人工智能 AI SIGAI   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/SIGAI_CSDN/article/details/88687747 SIGAI特约作者 陈泰红研究方向:机器学习.图像处理 目标检测是很多计算机视觉应用的基…
CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Cloud 随着CVPR2020入选论文的曝光,一篇关于自动驾驶的文章被录用,该论文提出了一个通用.高性能的自动驾驶检测器,首次实现3D物体检测精度与速度的兼得,有效提升自动驾驶系统安全性能.目前,该检测器在自动驾驶领域权威数据集KITTI BEV排行榜上排名第三.论文是如何解决物体检测难题的? View…
从TP.FP.TN.FN到ROC曲线.miss rate.行人检测评估 想要在行人检测的evaluation阶段要计算miss rate,就要从True Positive Rate讲起:miss rate = 1 - true positive rate true positive rate毕竟是一个rate,是一个比值.是谁和谁比呢?P 要从TP.FP.TN.FN讲起. 考虑一个二分类问题:一个item,它实际值有0.1两种取值,即负例.正例:而二分类算法预测出来的结果,也只有0.1两种取值,…