TensorFlow学习(1)-初识】的更多相关文章

初识TensorFlow 一.术语潜知 深度学习:深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法. 深度学习是机器学习中一种基于对数据进行表征学习(将原始数据转换成为能够被机器学习来有效开发的一种形式)的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉.语音识别.自然语言处理.音频识别与生物信息学等领域并获取了极好的效果. 神经网络:(人工)神经网络是一种…
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的.所以Tensorflow的计算过程就是一个Tensor流图.Tensorflow的图则是必须在一个Session中来计算.这篇笔记来大致介绍一下Session.Graph.Operation和Tensor. Session Session提供了O…
SSH 框架学习之初识Java中的Action.Dao.Service.Model-----------------------------学到就要查,自己动手动脑!!!   基础知识目前不够,有感性认识即可 首先这是现在最基本的分层方式,结合了SSH架构.modle层就是对应的数据库表的实体类.Dao层是使用了Hibernate连接数据库.操作数据库(增删改查).Service层:引用对应的Dao数据库操作,在这里可以编写自己需要的代码(比如简单的判断).Action层:引用对应的Servic…
在贝叶斯个性化排序(BPR)算法小结中,我们对贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)的原理做了讨论,本文我们将从实践的角度来使用BPR做一个简单的推荐.由于现有主流开源类库都没有BPR,同时它又比较简单,因此用tensorflow自己实现一个简单的BPR的算法,下面我们开始吧. 1. BPR算法回顾 BPR算法是基于矩阵分解的排序算法,它的算法训练集是一个个的三元组$<u,i,j>$,表示对用户u来说,商品i的优先级要高于商品j.训练成…
p{ text-align:center; } blockquote > p > span{ text-align:center; font-size: 18px; color: #ff0000; } a{ font-size:13px; text-emphasis: none; } #cnblogs_post_body a:link{ text-emphasis: none; } --> DotNetty网络通信框架学习之初识Netty 由于工作的需要最近又在探索网络通讯的框架,之前探…
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱.random.shuffle() 在训练数据上推断模型:得到输出 计算损失:loss(X, Y)多种损失函数 调整模型参数:最小化损失 SGD等优化方法. 评估:70%:30% 分训练集和校验集 代码框架: 首先模型参数初始化, 然后为每个训练闭环中的运算定义一个方法:读取训练数据input,计算…
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S1就是S2的一个超集,反过来,S2是S1的子集. 张量形状: 固定长度: [],() 0阶次:[3],(2,3) 1/2阶次 不定长度:[None] 表示任意长度的向量,(None,3) 表示行数任意,3列的矩阵 获取Op:tf.shape(tensor, name="tensor_shape&qu…
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自动根据loss计算对应variable的导数.示例如下: loss = ... opt = tf.tf.train.GradientDescentOptimizer(learning_rate=0.1) train_op = opt.minimize(loss) init = tf.initiali…
作者:黄璞链接:https://www.zhihu.com/question/41667903/answer/109611087来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 前言:其实TensorFlow本身仅仅是一个分布式的高性能计算框架,想要用TF做深度学习,仅仅学习这个框架本身是没有太大意义的.因此应该将TF看作技术路线中的一个核心点,去掌握整个开发所需要的必要技术,知识.尤其是深度学习的基本原理,这对日后搭建模型,模型调参以至提出新的模型都是极其有用的.…
如何高效的学习 TensorFlow 代码? 或者如何掌握TensorFlow,应用到任何领域? 作者:黄璞链接:https://www.zhihu.com/question/41667903/answer/109611087来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 有同学反应资源太多不知道从何看起,或者有点基础了想快速上手,因此就直接把几个比较好的教程放在这里,后面的内容作为参考. Stanford的CS 20SI课程,专门针对TensorFlow的课程,…