最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络. pytorch中有很方便的dataloader函数来方便我们进行批处理,做了简单的例子,过程很简单,就像把大象装进冰箱里一共需要几步? 第一步:打开冰箱门. 我们要创建torch能够识别的数据集类型(pytorch中也有很多现成的数据集类型,以后再说). 首先我们建立两个向量X和Y,一个作为输入的数据,一个作为正确的结果: 随后我们需要把X和Y组成一个完整的数据集,…
import torch from torch.utils.data import Dataset,DataLoader class SmsDataset(Dataset): def __init__(self): self.file_path = "./SMSSpamCollection" self.lines = open(self.file_path,encoding="utf-8").readlines() def __getitem__(self, ind…
转自:https://mp.weixin.qq.com/s/RTv0cUWvc0kuXBeNoXVu_A 自上而下理解三者关系 首先我们看一下DataLoader.__next__的源代码长什么样,为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据). class DataLoader(object): ... def __next__(self): if self.num_workers == 0: indices = next(self.sa…
PyTorch中的MIT ADE20K数据集的语义分割 代码地址:https://github.com/CSAILVision/semantic-segmentation-pytorch Semantic Understanding of Scenes through ADE20K Dataset. B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba. International Journal o…
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xception-master/run 会出来一个网站,复制到浏览器即可可视化loss,acc,lr等数据的变化过程. 举例说明pytorch中设置summary的方式: import argparse import os import numpy as np from tqdm import tqdm…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/article/details/101053719 关于数据格式 默认日常描述图片尺寸,采用[w,h]的形式,比如一张图片是1280*800就是指宽w=1280, 高h=800. 因此在cfg中所指定img scale = [1333, 800]就是指w=1333, h=800 从而转入计算机后,要从w,h变成…
本文简单描述如果自定义dataset,代码并未经过测试(只是说明思路),为半伪代码.所有逻辑需按自己需求另外实现: 一.分析DataLoader train_loader = DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))…
2018年07月07日 17:30:40 __矮油不错哟 阅读数:221   1. 数据处理 数据加载 ImageFolder DataLoader加载数据 sampler:采样模块 1. 数据处理 数据加载 在Pytorch 中,数据加载可以通过自己定义的数据集对象来实现.数据集对象被抽象为Dataset类,实现自己定义的数据集需要继承Dataset,并实现两个Python魔法方法. __getitem__: 返回一条数据或一个样本.obj[index]等价于obj.__getitem__(i…
pytorch对一下常用的公开数据集有很方便的API接口,但是当我们需要使用自己的数据集训练神经网络时,就需要自定义数据集,在pytorch中,提供了一些类,方便我们定义自己的数据集合 torch.utils.data.Dataset:所有继承他的子类都应该重写  __len()__  , __getitem()__ 这两个方法 __len()__ :返回数据集中数据的数量 __getitem()__ :返回支持下标索引方式获取的一个数据 torch.utils.data.DataLoader:…
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深度学习实践者. 在本文中,我们将看一个有趣的多模态主题,我们将结合图像和文本处理来构建一个有用的深度学习应用程序,即图像字幕.图像字幕是指从图像生成文本描述的过程 - 基于图像中的对象和动作.例如: 这个过程在现实生活中有很多潜在的应用.值得注意的是保存图像的标题,以便仅在此描述的基础上可以在稍后阶…