Flink - CoGroup】的更多相关文章

使用方式, dataStream.coGroup(otherStream) .where(0).equalTo(1) .window(TumblingEventTimeWindows.of(Time.seconds(3))) .apply (new CoGroupFunction () {...});   可以看到coGroup只是产生CoGroupedStreams public <T2> CoGroupedStreams<T, T2> coGroup(DataStream<…
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 1.1.1 独热编码 1.1.2 分布式表示 1.2 CBOW & Skip-Gram 1.2.1 CBOW 1.2.2 Skip-gram 1.3 Word2vec 1.3.1 Word2vec基本思想 1.3.2 Hierarchical Softmax基本思路 1.3.3 Hierarchi…
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 1. Window CoGroup与Join 1.1回顾RDBMS各种join 假设有两个表A和B 1.CROSS JOIN(AB的笛卡尔积/交叉联接) 省略写法为join,由于其返回的结果为被连接的两个数据表的乘积,因此当有WHERE, ON或USING条件的时候一般不建议使用,因为当数据表项目太多的时候,…
/* *CoGroup */ final StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment(); DataStream<Tuple2<String, String>> dataStream1 = streamExecutionEnvironment.socketTextStream("127.0.0.1&quo…
参考链接:https://mp.weixin.qq.com/s/BOCFavYgvNPSXSRpBMQzBw 需求场景分析 需求场景 需求诱诱诱来了...数据产品妹妹想要统计单个短视频粒度的「点赞,播放,评论,分享,举报」五类实时指标,并且汇总成 photo_id.1 分钟时间粒度的实时视频消费宽表(即宽表字段至少为:「photo_id + play_cnt + like_cnt + comment_cnt + share_cnt + negative_cnt + minute_timestam…
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} 张安 张安 2 1 2016-08-02T10:56:00Z 2016-08-02T10:56:00Z 1 2945 16790 139 39 19696 16.00 false false false false…
false false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:普通表格; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt…
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Flink中的窗口 9-Flink中的Time Flink时间戳和水印 Broadcast广播变量 FlinkTable&SQL Flink实战项目实时热销排行 Flink写入RedisSink 17-Flink消费Kafka写入Mysql 首先我们来看一下编程结构: 编程结构 public class S…
关于Flink相关的概念性东西就不说了,网上都有,官网也很详尽.本文主要记录一下Java使用Flink的简单例子. 首先,去官网下载Flink的zip包(链接就不提供了,你已经是个成熟的程序员了,该有一定的搜索能力了),解压后放到你想放的地方. 进入主目录后,是这样子的   image.png 你可以简单的看下其目录结构,然后就回到你喜欢的IDE创建一个工程吧. 使用IDEA创建一个maven项目,然后加入相应的依赖即可.也可以按照Flink官网的方式去创建一个maven工程,然后导入你喜欢的I…
http://ifeve.com/flink-quick-start/ http://vinoyang.com/2016/05/02/flink-concepts/ http://wuchong.me/blog/2016/05/09/flink-internals-understanding-execution-resources/ 并行数据流 程序在Flink内部的执行具有并行.分布式的特性.stream被分割成stream partition,operator被分割成operator sub…
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 1. 继续侃Flink编程基本套路 1.1 DataSet and DataStream DataSet and DataStream表示Flink app中的分布式数据集.它们包含重复的.不可变数据集.DataSet有界数据集,用在Flink批处理.DataStream可以是无界,用在Flink流处理.它们…
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 1. DataStream Transformation 1.1 DataStream转换关系 上图标识了DataStream不同形态直接的转换关系,也可以看出DataStream主要包含以下几类: 1.keyby就是按照指定的key分组 2.window是一种特殊的分组(基于时间) 3.coGroup 4.…
Flink 的流数据 API 编程指南 Flink 的流数据处理程序是常规的程序 ,通过再流数据上,实现了各种转换 (比如 过滤, 更新中间状态, 定义窗口, 聚合).流数据可以来之多种数据源 (比如, 消息队列, socket 流, 文件). 通过sink组件落地流计算的最终结果,比如可以把数据落地文件系统,标准输出流比如命令行界面, Flink 的程序可以运行在多种上下文环境 ,可以单独只是Flink api,也可以嵌入其他程序. execution可以运行在本地的 JVM里, 也可以 运行…
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz split 1.DataStream → SplitStream 2.按照指定标准将指定的DataStream拆分成多个流用SplitStream来表示 select 1.SplitStream → DataStream 2.跟split搭配使用,从SplitStream中选择一个或多个流 案例: pu…
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 1.4 JobGraph -> ExecutionGraph 1.5 ExecutionGraph 从JobGraph转换ExecutionGraph的过程中,内部会出现如下的转换. 1.ExecutionJobVertex <- JobVertex:JobVertex转换为Executio…
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 从上图可以看出Flink 中的Time大致分为以下三类: 1.Event Time:Event 真正产生的时间,我们称之为Event Time. 2.Ingestion Time:Event 事件被Source拿到,进入Flink处理引擎的时间,我们称之为Ingestion Time. 3.Window…
上一章<windows下flink示例程序的执行> 简单介绍了一下flink在windows下如何通过flink-webui运行已经打包完成的示例程序(jar),那么我们为什么要使用flink呢? flink的特征 官网给出的特征如下: 1.一切皆为流(All streaming use cases ) 事件驱动应用(Event-driven Applications) 流式 & 批量分析(Stream & Batch Analytics) 数据管道&ETL(Data…
随着大数据技术在各行各业的广泛应用,要求能对海量数据进行实时处理的需求越来越多,同时数据处理的业务逻辑也越来越复杂,传统的批处理方式和早期的流式处理框架也越来越难以在延迟性.吞吐量.容错能力以及使用便捷性等方面满足业务日益苛刻的要求. 在这种形势下,新型流式处理框架Flink通过创造性地把现代大规模并行处理技术应用到流式处理中来,极大地改善了以前的流式处理框架所存在的问题. 1.概述: flink提供DataSet Api用户处理批量数据.flink先将接入数据转换成DataSet数据集,并行分…
Flink程序遵循一定的编程模式.DataStream API 和 DataSet API 基本具有相同的程序结构.以下为一个流式程序的示例代码来对文本文件进行词频统计. package com.realtime.flink.streaming import org.apache.flink.apijava.utils.ParameterTool import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnv…
flink 使用Transitive Closure算法实现可达路径查找. 1.Transitive Closure是翻译闭包传递?我觉得直译不准确,意译应该是传递特性直至特性关闭,也符合本例中传递路径,寻找路径可达,直到可达路径不存在(即关闭). 2.代码很简单,里面有些概念直指核心原理,详细看注释. /** * @Author: xu.dm * @Date: 2019/7/3 11:41 * @Version: 1.0 * @Description: 传递闭包算法,本例中就是根据成对路径,查…
DataStream: DataStream 是 Flink 流处理 API 中最核心的数据结构.它代表了一个运行在多个分区上的并行流.一个 DataStream 可以从 StreamExecutionEnvironment 通过env.addSource(SourceFunction) 获得. DataStream 上的转换操作都是逐条的,比如 map(),flatMap(),filter().DataStream 也可以执行 rebalance(再平衡,用来减轻数据倾斜)和 broadcas…
Flink DataSet API编程指南: Flink中的DataSet程序是实现数据集转换的常规程序(例如,过滤,映射,连接,分组).数据集最初是从某些来源创建的(例如,通过读取文件或从本地集合创建).结果通过接收器返回,接收器可以将数据写入(分布式)文件或标准输出(命令行终端). public class WordCountExample { public static void main(String[] args) throws Exception { final ExecutionE…
综述: 在Flink中DataStream程序是在数据流上实现了转换的常规程序. 1.示范程序 import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streamin…
Flink程序是实现分布式集合转换的常规程序.集合最初是从源创建的.通过接收器(slink)返回结果,接收器可以将数据写到某个文件或stdout.Flink可以在各种环境(context)中运行,本地JVM或集群. 1.数据集和数据流 Flink用特殊的类DataSet and DataStream来表示程序中的数据.可以认为他们是可以包含重复数据的不可变数据集合.在DataSet中数据是有限的,而在DataStream中数据是无限的. 这些集合不同于java里的集合,他们是不可变的,一旦被创造…
Data Sources 源是程序读取输入数据的位置.可以使用 StreamExecutionEnvironment.addSource(sourceFunction) 将源添加到程序.Flink 有许多预先实现的源函数,也可以通过实现 SourceFunction 方法自定义非并行源 ,或通过实现 ParallelSourceFunction 或扩展 RichParallelSourceFunction 自定义并行源. 有几个预定义的流数据源可从 StreamExecutionEnvironm…
Apache Flink Apache Flink 是一个兼顾高吞吐.低延迟.高性能的分布式处理框架.在实时计算崛起的今天,Flink正在飞速发展.由于性能的优势和兼顾批处理,流处理的特性,Flink可能正在颠覆整个大数据的生态. DataSet API 首先要想运行Flink,我们需要下载并解压Flink的二进制包,下载地址如下:https://flink.apache.org/downloads.html 我们可以选择Flink与Scala结合版本,这里我们选择最新的1.9版本Apache…
序 工作中用Flink做批量和流式处理有段时间了,感觉只看Flink文档是对Flink ProgramRuntime的细节描述不是很多, 程序员还是看代码最简单和有效.所以想写点东西,记录一下,如果能对别人有所帮助,善莫大焉. 说一下我的工作,在一个项目里我们在Flink-SQL基础上构建了一个SQL Engine, 使懂SQL非技术人员能够使用SQL代替程序员直接实现Application, 然后在此基础上在加上一些拖拽的界面,使不懂SQL非技术人员 利用拖拽实现批量或流式数据处理的Appli…
第一章.flink实时数仓入门 一.依赖 <!--Licensed to the Apache Software Foundation (ASF) under oneor more contributor license agreements. See the NOTICE filedistributed with this work for additional informationregarding copyright ownership. The ASF licenses this fi…
第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高吞吐,低延迟,高性能. 1. Flink 是什么? 1) Flink 的发展历史 在 2010 年至 2014 年间,由柏林工业大学.柏林洪堡大学和哈索普拉特纳研究所联合发起名为"Stratosphere:Information Management on the Cloud"研究项目,该…
前言.flink介绍: Apache Flink 是一个分布式处理引擎,用于在无界和有界数据流上进行有状态的计算.通过对时间精确控制以及状态化控制,Flink能够运行在任何处理无界流的应用中,同时对有界流,则由一些专为固定数据集设计的算法和数据结构进行了内部处理,从而提升了性能. 1.flink特性 (1)Flink是一个开源的流处理框架,它具有以下特点: 分布式:Flink程序可以运行在多台机器上. 高性能:处理性能比较高. 高可用:由于Flink程序本身是稳定的,因此它支持高可用性. 准确:…