作者:蒋天园 Date:2020-04-18 来源:3D-VID:基于LiDar Video信息的3D目标检测框架|CVPR2020 Brief paper地址:https://arxiv.org/pdf/2004.01389.pdf code地址:https://github.com/yinjunbo/3DVID 这是一篇来自北理工和百度合作的文章,目前还未开源,只有项目地址,2020年3月份放置在arxiv上,已经被CVPR2020接收:从标题我们猜测该文采用的时空信息将多帧的点云信息融合做…
ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测 STD: Sparse-to-Dense 3D Object Detector for Point Cloud 论文链接:https://arxiv.org/pdf/1907.10471.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第5. 摘要 提出了一种新的两级三维目标检测框架,称为稀疏到稠密三维目标检测框架(STD).第一阶段是一个自下而上的提案生成网络,它使用原始点…
一直想基于传统图像匹配方式做一个融合Demo,也算是对上个阶段学习的一个总结. 由此,便采购了一个摄像头,在此基础上做了实时检测平面目标的特征匹配算法. 代码如下: # coding: utf-8 ''' @author: linxu @contact: 17746071609@163.com @time: 2021-07-26 上午11:54 @desc: 基于特征匹配的实时平面目标检测算法 @Ref: https://docs.opencv.org/3.0-beta/doc/py_tutor…
参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-CNN [3]Faster R-CNN: towards real-time object detection with region proposal networks 1. 概述 图像分类,检测及分割是计算机视觉领域的三大任务.图像分类模型是将图像划分为单个类别,通常对应于图像中最突出的物体.但是…
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Detection 论文链接:https://arxiv.org/pdf/1912.13192.pdf 本文在LITTI数据集3D Object Detection三维目标检测性能排名第一. 摘要 提出了一种新的高性能的三维目标检测框架:点体素RCNN(PV-RCNN),用于从点云中精确检测三维目标.该方…
3D惯导Lidar SLAM LIPS: LiDAR-Inertial 3D Plane SLAM 摘要 本文提出了最*点*面表示的形式化方法,并分析了其在三维室内同步定位与映射中的应用.提出了一个利用最*点*面表示的无奇异*面因子,并在基于图的优化框架中证明了它与惯性预积测量的融合.所得到的LiDAR惯性三维*面SLAM(LIPS)系统在定制的LiDAR模拟器和实际实验中都得到了验证. 导言              准确.鲁棒的室内定位和地图绘制是非调音机器人应用的基本要求.室内环境通常是丰…
转自知乎<深度学习大讲堂> 雷锋网(公众号:雷锋网)按:本文作者王斌,中科院计算所前瞻研究实验室跨媒体计算组博士生,导师张勇东研究员.2016年在唐胜副研究员的带领下,作为计算所MCG-ICT-CAS团队核心主力队员(王斌.肖俊斌),参加了ImageNet大规模视觉识别挑战赛(ILSVRC)的视频目标检测(VID)任务并获得第三名.目标检测相关工作受邀在ECCV 2016 ImageNet和COCO竞赛联合工作组会议(ImageNet and COCO Visual Recognition C…
CVPR2020:三维实例分割与目标检测 Joint 3D Instance Segmentation and Object Detection for Autonomous Driving 论文地址: http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhou_Joint_3D_Instance_Segmentation_and_Object_Detection_for_Autonomous_Driving_CVPR_2020_pape…
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别. object detection技术的演进:RCNN->SppNET->Fast-RCNN->Faster-RCNN 从图像识别的任务说起这里有一个图像任务:既…
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别. object detection技术的演进:RCNN->SppNET->Fast-RCNN->Faster-RCNN 从图像识别的任务说起这里有一个图像任务:既…