【NLP】MT中BLEU评分机制】的更多相关文章

参考博客:https://blog.csdn.net/guolindonggld/article/details/56966200 原著论文:http://www.aclweb.org/anthology/P02-1040.pdf BLEU是2002年IBM研究人员提出的一种自动评价MT翻译质量的方法.其本质是比对MT给出的结果(称为候选翻译,candidate)和事前知道的比较好的若干个翻译样本(称为参考翻译,reference,通常是人工翻译给出的数据),比较两者之间的相似度. 在计算这个相…
lucene 的评分机制 elasticsearch是基于lucene的,所以他的评分机制也是基于lucene的.评分就是我们搜索的短语和索引中每篇文档的相关度打分. 如果没有干预评分算法的时候,每次查询,lucene会基于一个评分算法来计算所有文档和搜索语句的相关评分. 使用lucene的评分机制基本能够把最符合用户需要的搜索放在最前面. 当然有的时候,我们可能想要自定义评分算法,这个就和lucene的评分算法没有什么关系了.当然,我们大多数应该还是会根据自己的需求,来调整lucene本身的算…
Solr In Action 笔记(2) 之评分机制(相似性计算) 1 简述 我们对搜索引擎进行查询时候,很少会有人进行翻页操作.这就要求我们对索引的内容提取具有高度的匹配性,这就搜索引擎文档的相似性计算,如何准确的选出最符合查询条件的文档. <这就是搜索引擎>里面对相似性计算进行了简单的介绍. 内容的相似性计算由搜索引擎的检索模型建模,它是搜索引擎的理论基础,为量化相关性提供了一种数学模型,否则没法计算.当然检索模型理论研究存在理想化的隐含假设,即假设用户需求已经通过查询非常清晰明确地表达出…
从android N开始,引入了wifi评分机制,选择wifi的时候会通过评分来选择. android O源码 frameworks\opt\net\wifi\service\java\com\android\server\wifi\SavedNetworkEvaluator.java private int calculateBssidScore(ScanResult scanResult, WifiConfiguration network, WifiConfiguration curren…
lucene 的评分机制 elasticsearch是基于lucene的,所以他的评分机制也是基于lucene的.评分就是我们搜索的短语和索引中每篇文档的相关度打分. 如果没有干预评分算法的时候,每次查询,lucene会基于一个评分算法来计算所有文档和搜索语句的相关评分. 使用lucene的评分机制基本能够把最符合用户需要的搜索放在最前面. 当然有的时候,我们可能想要自定义评分算法,这个就和lucene的评分算法没有什么关系了.当然,我们大多数应该还是会根据自己的需求,来调整lucene本身的算…
原文出处:http://blog.chenlb.com/2009/08/lucene-scoring-architecture.html Lucene 评分体系/机制(lucene scoring)是 Lucene 出名的一核心部分.它对用户来说隐藏了很多复杂的细节,致使用户可以简单地使用 lucene.但个人觉得:如果要根据自己的应用调节评分(或结构排序),十分有必须深入了解 lucene 的评分机制. Lucene scoring 组合使用了 信息检索的向量空间模型 和 布尔模型 . 首先来…
导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对于长度较短的输入序列而言,该模型能够学习出对应合理的向量表示.然而,这种模型存在的问题在于:当输入序列非常长时,模型难以学到合理的向量表示. 在这篇博文中,我们将探索加入LSTM/RNN模型中的attention机制是如何克服传统编码器-解码器结构存在的问题的. 通过阅读这篇博文,你将会学习到: 传…
转自: http://www.oschina.net/question/5189_7707  Lucene 评分体系/机制(lucene scoring)是 Lucene 出名的一核心部分.它对用户来说隐藏了很多复杂的细节,致使用户可以简单地使用 lucene.但个人觉得:如果要根据自己的应用调节评分(或结构排序),十分有必须深入了解 lucene 的评分机制. Lucene scoring 组合使用了 信 息检索的向量空间模型 和 布尔模型 . 首先来看下 lucene 的评分公式(在 Sim…
转自:http://www.jeyzhang.com/understand-attention-in-rnn.html,感谢分享! 导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对于长度较短的输入序列而言,该模型能够学习出对应合理的向量表示.然而,这种模型存在的问题在于:当输入序列非常长时,模型难以学到合理的向量表示. 在这篇博文中,我们将探索加…
1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据的相似性,从数据集中寻找与目标数据最相似的项目,而这种相似性通常会被量化到空间上数据之间的距离,例如欧几里得距离(Euclidean distance),NN认为数据在空间中的距离越近,则数据之间的相似性越高. 当需要查找离目标数据最近的前k个数据项时,就是k最近邻检索(K-NN). 0x2:NN的…